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1. First-Order Differential Equations

1.1. Introduction

Definition 1.1 (ordinary differential equation). An ordinary differential equation (ODE) is a relation
containing one real variable x, the real dependent variable y, and some of its derivatives y′,y′′, . . . ,y(n), . . .
with respect to x.

The order of an ODE is defined to be the order of the highest derivative that occurs in the equation. As
such, an nth order ODE has the general form

F
(

x,y,y′, . . . ,y(n)
)
= 0.

Definition 1.2 (linear ODE). An nth order ODE is said to be linear if it can be written in the form

a0 (x)y(n)+a1 (x)y(n−1)+ . . .+an (x)y = r (x) .

The functions a j (x), where 0 ≤ j ≤ n, are called the coefficients of the equation. Also, we will always
assume that a0 (x) ̸= 0 in any interval for which the equation is defined.

If r (x) = 0, the equation is said to be homogeneous. The equation is said to be non-homogeneous
otherwise, and r (x) is called the non-homogeneous term.

A functional relation between the dependent variable y and the independent variable x that satisfies the
given ODE in some interval is called a solution of the given ODE on the interval. A general solution of an nth

order ODE depends on n arbitrary constants. Recall the equation mentioned in Definition 1.1, so a first-order
ODE may be written as

F
(
x,y,y′

)
= 0.

In this chapter, we will only consider first-order ODE.

Definition 1.3 (explicit solution). The function y = φ (x) is called an explicit solution of F (x,y,y′) = 0
in the interval J provided that F (x,φ (x) ,φ ′ (x)) = 0 for all x ∈ J.

Definition 1.4 (implicit solution). A relation of the form ψ (x,y) = 0 is an implicit solution of
F (x,y,y′) = 0 provided it determines one or more functions y = φ (x) which satisfy F (x,φ (x) ,φ ′ (x)) =
0.

Definition 1.5 (parametric solution). The pair of equations

x = x(t) and y = y(t)

is a parametric solution of F (x,y,y′) = 0 if

F
(

x(t) ,y(t) ,
ẏ(t)
ẋ(t)

)
= 0.
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Example 1.1. Consider the ODE

x+ y
dy
dx

= 0 for x ∈ (−1,1) .

We say that x2 + y2 = 1 is an implicit solution, whereas x = cos t and y = sin t, where t ∈ (0,π), is a parametric
solution.

The solutions of a first-order ODE

dy
dx

= f (x,y)

represent a one-parameter family of curves in the xy-plane. These are called integral cuvres. In other words,
if y = y(x) is a solution to y′ = f (x,y), then the vector field F(x,y) = ⟨1, f (x,y)⟩ is tangent to the curve
r(x) = ⟨x,y(x)⟩ at every point (x,y) since r′ (x) = F(x,y).

Given a family of functions parametrised by some constants, a differential equation can be formed by
eliminating the constants of this family and its derivatives. Consider Example 1.2 for instance.

Example 1.2. The family of functions y = Aex +Bsinx satisfies the ODE

d4y
dx4 − y = 0

when the constants A and B are eliminated using the derivatives.

Example 1.3. Find the differential equation satisfied by the family of functions

y = xc for x > 0, where c is a parameter.

Solution. We have

lny = c lnx so
1
y

dy
dx

=
c
x
.

As such,

dy
dx

=
y
x
· lny

lnx
=

y lny
x lnx

,

which is the desired differential equation. □

Definition 1.6 (separable equation). A separable differential equation can be written as

dy
dx

=
f (x)
g(y)

.

It is easy to obtain the solution of a separable differential equation (Definition 1.6). By rearranging the
equation, we have

g(y) dy = f (x) dx.

Integrating both sides with respect to their respective variables, we obtain the general solution.

Example 1.4. Solve

dy
dx

=−2xy with the initial condition y(0) = 1.

Solution. This is a simple exercise from MA2002 so we omit the solution. One can deduce that y = e−x2
. □
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More generally, given the differential equation

dy
dx

= f
(y

x

)
,

we can reduce it to a separable equation by using the substitution u = y/x. As such, we obtain the differential
equation

1
f (u)−u

du =
1
x

dx.

Example 1.5. Solve

2xy
dy
dx

+ x2 − y2 = 0.

Solution. Dividing both sides by x2, we obtain

2
(y

x

) dy
dx

+1−
(y

x

)2
= 0.

This prompts us to consider the substitution u = y/x, so

du
dx

=
x dy

dx − y
x2 =

1
x

(
dy
dx

−u
)
.

The differential equation becomes

2u
(

x
du
dx

+u
)
+1−u2 = 0 so u2 +2xu

du
dx

+1 = 0.

The remaining process is trivial. □

Definition 1.7 (homogeneous function). A function is said to be homogeneous of degree n if

f (tx, ty) = tn f (x,y) for all x,y, t.

Example 1.6.
√

x2 + y2 and x+ y are homogeneous of degree 1, x2 + y2 is homogeneous of degree 2, and
sin(x/y) is homogeneous of degree 0.

Definition 1.8 (homogeneous DE). The ODE

M (x,y)+N (x,y)
dy
dx

= 0

is said to be homogeneous of degree n if both M (x,y) and N (x,y) are homogeneous of degree n.

If we write the differential equation

M (x,y)+N (x,y)
dy
dx

= 0

as

dy
dx

= f (x,y) where f (x,y) =−M (x,y)
N (x,y)

,

then f (x,y) is homogeneous of degree 0. To solve the DE y′ = f (x,y), we consider the substitution y = xz so
the differential equation becomes

z+ x
dz
dx

= f (x,xz) = x0 f (1,z) = f (1,z) .
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As such, the variables can be separated to yield

1
f (1,z)− z

dz =
1
x

dx.

Integrating both sides yields the solution.

Example 1.7. For example, we wish to solve the differential equation

dy
dx

=
x+ y
x− y

.

Solution. Using the substitution y = zx, we have

z+ x
dz
dx

=
x+ zx
x− zx

x
dz
dx

=
1+ z
1− z

− z

dz
dx

=
1+ z2

x(1− z)

Using separation of variables, and integrating both sides,∫ 1− z
1+ z2 dz =

∫ 1
x

dx

tan−1(z)− 1
2

ln(1+ z2) = ln |x|

tan−1
(y

x

)
= ln

√
x2 + y2 + c

□

An equation of the form

dy
dx

=
a1x+b1y+ c1

a2x+b2y+ c2

can be reduced to a homogeneous equation by a suitable substitution

x = z+h and y = w+ k where a1b2 ̸= a2b1,

where h and k are solutions to the system of linear equations

a1h+b1k+ c1 = 0 and a2h+b2k+ c2 = 0.

To see why this works, consider the original differential equation. The numerator can be written as

a1(z+h)+b1(w+ k)+ c1 = a1z+b1w+ c1,

whereas the denominator can be written as

a2(z+h)+b2(w+ k)+ c2 = a2z+b2w+ c2.

Note that
dx
dz

= 1 and
dy
dw

= 1 =⇒ dy
dx

=
dw
dz

.

As such, the differential equation can be written as

dw
dz

=
a1z+b1w+ c1

a2z+b2w+ c2
.

This new equation will become easier to solve.

1.2. Exact Equations and Integrating Factors
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Definition 1.9 (exact ODE). We can write a first order ODE in the following form:

M(x,y)dx+N(x,y)dy = 0

This differential equation is exact if there exists a function u(x,y) such that

M(x,y)dx+N(x,y)dy = du =
∂u
∂x

dx+
∂u
∂y

dy.

Proposition 1.1. If the differential equation is exact, then the general solution is u(x,y) = c, where c is
an arbitrary constant.

Theorem 1.1 (condition for ODE to be exact). If we have a first order ODE of the form M(x,y)dx+
N(x,y)dy = 0 and we assume M and N, together with their first partial derivatives, to be continuous in

the rectangle S defined by the region |x− x0|< a and |y− y0|< b,

a necessary and sufficient condition for the differential equation to be exact is

∂M
∂y

=
∂N
∂x

for all (x,y) ∈ S.

Note that this has some semblance to Green’s theorem. When this condition is satisfied, a general
solution, given by u(x,y) = c, can be written as

u(x,y) =
∫ x

x0

M(s,y) ds+
∫ y

y0

N(x0, t) dt for some constant c.

Example 1.8. We wish to solve the differential equation

(x3 +3xy2)dx+(3x2y+ y3)dy = 0.

Solution. This differential equation is exact since

∂

∂y
(x3 +3xy2) =

∂

∂x
(3x2y+ y3) = 6xy.

It is clear that ∫
(x3 +3xy2) dx =

x4

4
+

3x2y2

2
and

∫
(3x2y+ y3) dy =

3x2y2

2
+

y4

4

and hence, the general solution is x4 +6x2y2 + y4 = c. □

Definition 1.10 (integrating factor). A non-zero function µ(x,y) is an integrating factor of M(x,y)dx+
N(x,y)dy = 0 if the equivalent differential equation

µ(x,y)M(x,y)dx+µ(x,y)N(x,y)dy = 0

is exact.

If µ is an integrating factor, then (µM)y = (µN)x, so by the product rule,

µMy +µyM = µNx +µxN so Nµx −Mµy = µ(My −Nx).
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One may look for an integrating factor of the form µ = µ(v), where v is a known function of x and y. Hence,

1
µ

dµ

dv
=

My −Nx

Nvx −Mvy
.

If the right side is a function of v alone, say φ(v), then∫ 1
µ

dµ =
∫

φ(v) dv

µ = exp
(∫

φ(v) dv
)

We use this method of integrating factor to help us solve differential equations. There are three common choices
for v, namely v = x, v = y and v = xy.

Example 1.9. Solve the differential equation

x2y+ y+1+ x(1+ x2)
dy
dx

= 0.

Solution. Note that M(x,y) = x2y + y + 1 and N(x,y) = x(1 + x2). Let µ be an integrating factor of the
differential equation. Then, My −Nx = −2x2. It would be apt if Nvx −Mvy is a function solely in terms of
x, which prompts us to set v = x. Hence, Nvx −Mvy = x(1+ x2), implying that

µ =
1

1+ x2 .

Multiplying both sides of the differential equation by µ gives us

y+
1

1+ x2 + xy′ = 0,

and we observe that it is an exact equation. Setting ux = y+ 1
1+x2 and uy = x, integrating the first equation gives

u(x,y) = xy+ tan−1 x+φ(y). Taking the partial derivative with respect to y, we have uy = x+φ ′(y) but since
uy = x as mentioned, it implies that φ ′(y) = 0, and so φ(y) = c. Therefore, the general solution is

xy+ tan−1 x = c.

□

Example 1.10. Solve the differential equation

xy3 +2x2y2 − y2 +(x2y2 +2x3y−2x2)
dy
dx

= 0.

Solution. Consider My −Nx = xy2 −2x2y+4x−2y. It hints to us that Nvx −Mvy should be a function in terms
of xy. Consider the substitution v = xy. Then, Ny−Mx =−x2y. Putting everything together,

My −Nx

Ny−Mx
= 1− 2

xy
,

which is a function in terms of xy. The integrating factor is

µ = exp
(∫

1− 2
v

dv
)
=

exy

(xy)2 .

Multiplying both sides of the differential equation by µ gives

exy
(

y
x
+2− 1

x2

)
+ exy

(
1+

2x
y
− 2

y2

)
dy
dx

= 0,
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which is an exact equation. Taking the integral of M with respect to x and using integration by parts,

u(x,y) =
∫

exy (yx−1 +2− x−2) dx

= y
∫

exyx−1 dx+2
∫

exy dx−
∫

exyx−2 dx+φ (y)

= y
∫

exyx−1 dx+2exyy−1 −
∫

exyx−2 dx+φ (y)

= y
∫

exyx−1 dx+2exyy−1 + exyx−1 + y
∫

exyx−1 dx+φ (y)

= exy (2y−1 + x−1)+φ (y)

As uy = exy(1+ 2xy−1 − 2y−2), then taking the partial derivative of u(x,y) with respect to y, we have uy =

exy(1+2xy−1 −2y−2 +φ ′(y). Set φ ′(y) = 0, so φ(y) = c. Hence, the solution to the differential equation is

exy(x−1 +2y−1) = c,

where c is a constant. □

Proposition 1.2. Some useful formulae are as follows:
(1)

d
(

x
y

)
=

ydx− xdy
y2

(2)
d (xy) = xdy+ ydx

(3)
d
(
x2 + y2)= 2xdx+2ydy

(4)

d
(

tan−1
(

x
y

))
=

ydx− xdy
x2 + y2

(5)

d
(

ln
∣∣∣∣xy
∣∣∣∣)=

ydx− xdy
xy

1.3. First-Order Linear Equations

Definition 1.11 (homogeneous linear equation). A first order homogeneous linear equation is of the
form

y′+ yP(x) = 0,

where P(x) is a continuous function on an interval J.

Theorem 1.2. The general solution to the differential equation

y′+ yP(x) = 0 is y = ce−P(x) where P(x) =
∫ x

a
P(s) ds.

Proof. Set P(x) =
∫ x

a P(s) ds. Then, multiplying both sides of the equation by eP(x), we obtain

d
dx

(
yeP(x)

)
= 0,

which implies that yeP(x) is some constant, say c. The result follows.



MA3220 ORDINARY DIFFERENTIAL EQUATIONS Page 9 of 62

Definition 1.12 (homogeneous non-linear equation). We consider a first order non-homogeneous
linear equation, namely

y′+ yP(x) = Q(x),

where P(x) and Q(x) are continuous functions on an interval J.

Theorem 1.3. The general solution to the differential equation

y′+ yP(x) = Q(x) is y = e−P(x)
∫ x

a
eP(t)Q(t) dt where P(x) =

∫ x

a
P(s) ds

Proof. Set P(x) =
∫ x

a P(s) ds. Multiplying the original differential equation by eP(x) gives

d
dx

(
yeP(x)

)
= eP(x)Q(x).

Integrating both sides with respect to x and dividing by eP(x), we obtain the general solution.

Example 1.11. Solve the differential equation

x
dy
dx

+3y = 5x2, where x > 0.

Solution: We divide both sides by x so that the differential equation becomes

dy
dx

+3
(y

x

)
= 5x,

thus it is clear that P(x) = 3/x and Q(x) = 5x. The integrating factor is exp(
∫

3/x) = x3. Multiplying both sides
by the integrating factor, it is easy to see that

d
dx

(
x3y
)
= 5x4.

Integrating both sides with respect to x and dividing by x3, we conclude that the solution is

y = x2 +
c
x3 .

Definition 1.13 (Bernoulli equation). An ODE of the form

y′+ yP(x) = ynQ(x),

where n ̸= 0,1, is called the Bernoulli equation. The functions P(x) and Q(x) are continuous functions
on an interval J.

To solve differential equations of this form, we need to perform a trick such that it reduces to a non-
homogeneous linear equation (discussed in the previous section). Consider the substitution u = y1−n. Then,

du
dx

= (1−n)y−n dy
dx

so
yn

1−n

(
du
dx

)
=

dy
dx

.

Hence, the differential equation becomes

du
dx

+(1−n)uP(x) = (1−n)Q(x),

which is indeed a first order linear ODE.
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Definition 1.14 (Riccati equation). An ODE of the form

y′ = P(x)+ yQ(x)+ y2R(x)

is called a Riccati Equation. The functions P(x),Q(x) and R(x) are continuous on an interval J.

In general, the Riccati equation cannot be solved by a sequence of integrations. However, if a particular
solution is known, then it can be reudced to a linear equation, and thus is solvable. The constraints on the
Riccati equation are that P(x) ̸= 0 and R(x) ̸= 0. Note that if P(x) = 0, we obtain the Bernoulli equation and if
R(x) = 0, we obtain a first order non-homogeneous linear equation which can be easily solved by the method
of integrating factor.

Let us come up with an approach to solve the Riccati equation.

Theorem 1.4. If y = y0(x) is a particular solution of the Riccati equation, we set H(x) and Z(x) to be
the following:

H(x) =
∫ x

x0

Q(t)+2R(t)y0(t) dt

Z(x) = e−H(x)
(

c−
∫ x

x0

eH(t)R(t) dt
)

where c is an arbitrary constant. Then, the general solution is given by

y = y0(x)+
1

Z(x)
.

Proof. Let u(x)z(x) = 1 and y = y0(x)+u(x), which yields

y′ = y
′
0 +u′ = P+Q(y0 +u)+R(y0 +u)2.

As y = y0 is a particular solution, then y
′
0 = P+Qy0 +Ry2

0, which implies that u′ = (Q+2Ry0)u+Ru2. This is
a Bernoulli equation, where n = 2. The rest of the proof is left as an exercise since I believe you know where
I’m heading towards.

Example 1.12. Solve the Riccati equation

dy
dx

=−x5 +
y
x
+ x3y2,

where yp = x is a particular solution.

Solution. Let the general solution be y = x+u. Differentiating both sides yields y′ = 1+u′, and so

du
dx

=−x5 +
u
x
+ x3(x+u)2.

Using the substitution uz = 1, we have uz′+ zu′ = 0 and so the differential equation becomes

−u
z

(
dz
dx

)
=−x5 +

1
xz

+ x3
(

xz+1
z

)2

dz
dx

=
x5z
u

− 1
ux

+
x3(xz+1)2

uz
dz
dx

= x5z2 − z
x
+ x3(xz+1)2

dz
dx

+ z
(

1
x
+2x4

)
=−x3
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The rest of the working uses the method of integrating factor so I shall not delve into it. The general solution is
given by

y = x+
xexp

(
2x5

5

)
c− 1

2 exp
(

2x5

5

) ,
for a constant c. □

Example 1.13 (MA3220 AY24/25 Sem 1 Midterm). Given that y0 = x is a particular solution to the Riccati
equation

y′ =
(
1+ x+2x2 cosx

)
− (1+4xcosx)y+2y2 cosx,

find its general solution.

Solution. Let the general solution be y = y0 +u = x+u. Then,

dy
dx

= 1+
du
dx

.

As such,

1+
du
dx

= 1+ x+2x2 cosx− (x+u)(1+4xcosx)+2(x+u)2 cosx

du
dx

= x+2x2 cosx− x−u−4x2 cosx−4uxcosx+2x2 cosx+4uxcosx+2u2 cosx

du
dx

=−u+2u2 cosx

1
u2

du
dx

=−1
u
+2cosx

By using the substitution v = 1/u, we obtain

dv
dx

− v =−2cosx.

The integrating factor is e−x so

d
dx

(
ve−x)=−2e−x cosx.

Using integration by parts,

v =
1

e−x

(
e−x cosx− e−x sinx+ c

)
so v = cosx− sinx+ cex.

The general solution is

y = x+
1

cosx− sinx+ cex .

□

Theorem 1.5 (Riccati equation). The general solution of the Riccati equation can be written as

y =
cF(x)+G(x)
c f (x)+g(x)

,
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where

f (x) = e−H(x)

g(x) =− f (x)
∫ x

x0

eH(t)R(t) dt

F (x) = y0 (x) f (x)

G(x) = y0 (x)g(x)+1

Definition 1.15 (cross ratio). Define the cross ratio of four distinct functions p(x),q(x),r(x) and s(x)
by

(p−q)(r− s)
(p− s)(r−q)

.

The cross ratio of four distinct particular solutions of a Riccati equation is independent of x. As a
consequence, we have the following result (Theorem 1.6):

Theorem 1.6. If y1,y2 and y3 are three distinct particular solutions of a Riccati equation, then the
general solution is given by

(y1 − y2)(y3 − y)
(y1 − y)(y3 − y2)

= c where c is a constant.

Theorem 1.7. If y1 and y2 are two distinct particular solutions of a Riccati equation, its general solution
is

ln
∣∣∣∣y− y1

y− y2

∣∣∣∣= ∫ (y1(x)− y2(x))R(x) dx+ c where c is a constant.

Definition 1.16 (Abel’s equation). A generalisation of the Riccati equation is Abel’s equation of the
first kind. The latter has the formula

y′ = P(x)+ yQ(x)+ y2R(x)+ y3S(x),

where P(x),Q(x),R(x) and S(x) are continuous functions on an interval J and S(x) ̸= 0.

Abel’s equation can be reduced to either a Riccati equation or a Bernoulli equation.

1.4. First-Order Implicit Equations

Previously, we discussed first-order explicit equations, i.e. equations of the form y′ = f (x,y). Now, we will
discuss solutions of some first-order explicit equations

F
(
x,y,y′

)
= 0 which are not sovlable in y′.

Consider an equation solvable in y, say y = f (x,y′). Let p = y′. Differentiating y = f (x, p), we obtain

( fx (x, p)− p) dx+ fp (x, p) d p = 0.

This is a first-order explicit equation in terms of x and p. If p = φ (x) is a solution of the above equation, then
y = f (x,φ (x)) is a solution to y = f (x,y′).

This prompts us to discuss Clairaut’s equation (Definition 1.17).
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Definition 1.17 (Clairaut’s equation). Clairaut’s euqation is of the form

y = x
dy
dx

+ f
(

dy
dx

)
where f has continuous first-order derivative.

The trick to solving Clairaut’s equation is to let p = y′.

Example 1.14. Solve Clairaut’s equation

y = x
dy
dx

− 1
4

(
dy
dx

)2

.

Solution. Let p = dy/dx. Then, differentiating both sides of the original equation yields

dy
dx

= x
d2y
dx2 +

dy
dx

− 1
2

(
dy
dx

)(
d2y
dx2

)
.

As such,

p = x
d p
dx

+ p− 1
2

p
d p
dx

d p
dx

(2x− p) = 0

Either d p/dx = 0 or p = 2x. The rest of the working is trivial. One should be able to deduce that y = cx− c2/4
or y = x2 respectively. □

We then discuss the method of parametrisation, which can be used to solve equations where either x or y
is missing. Consider F (y,y′) = 0, where x is missing. Let p = y′ and we can write the differential equation as
F (y, p) = 0. This determines a family of curves in the yp-plane. Let one of the curves be defined by y = g(t)
and p = h(t) parametrically, i.e. F (g(t) ,h(t)) = 0. Since

y′ =
dy
dx

then dx =
dy
y′

=
dy
p

=
g′ (t) dt

h(t)
,

and consequently, we have

x =
∫ t

t0

g′ (t)
h(t)

dt + c.

The solutions to the original differential equation F (y,y′) are thus

x =
∫ t

t0

g′ (t)
h(t)

dt + c and y = g(t) .

Example 1.15. Solve

y2 +

(
dy
dx

)2

−1 = 0.

Solution. We can use the method of parametrisation. Alternatively, we will use a different method. Differenti-
ating the original differential equation once, we obtain

2y
dy
dx

+2
(

dy
dx

)(
d2y
dx2

)
= 0

dy
dx

(
y+

d2y
dx2

)
= 0

Either dy/dx = 0 or y+d2y/dx2 = 0. We omit the remaining details (solving the second-order ODE requires a
technique on finding its characteristic equation which we will discuss in due course). □
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Thirdly, we also have the method of reduction of order. Consider the equation F (x,y′,y′′) = 0, where y is
missing. Let p = y′, then y′′ = p′. As such, the differential equation can be written as F (x, p, p′) = 0. This is a
first-order equation in x and p. If p = φ (x,c1) is a general solution to F (x, p, p′) = 0, then the general solution
to F (x,y′,y′′) = 0 is

y =
∫ x

x0

φ (t,c1) dt + c2.

Example 1.16. Solve the differential equation

x
d2y
dx2 −

dy
dx

= 3x2.

Solution. We use the substitution p = dy/dx so the differential equation becomes

x
d p
dx

− p = 3x2.

As such, we now use the method of integrating factor. One should check that the solution is y = x3 + c1x2 + c2

for some constants c1 and c2. □
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2. Linear Differential Equations

2.1. General Theory

Consider the nth order linear equation

y(n)+a1 (x)y(n−1)+ . . .+an−1 (x)y′+an (x)y = f (x) ,

where y(k) denotes the kth derivative of y with respect to x. Throughout this chapter, we assume that a j (x) and
f (x) are continuous functions defined on the interval (a,b). When f (x) ̸= 0, the above equation is said to be
non-homogeneous. As such, the associated homogeneous equation is

y(n)+a1 (x)y(n−1)+ . . .+an−1 (x)y′+an (x)y = 0.

We begin with the initial value problem

y(n)+a1 (x)y(n−1)+ . . .+an (x)y = f (x)

y(x0) = y0

y′ (x0) = y1

... =
...

y(n−1) (x0) = yn−1

Theorem 2.1 (existence and uniqueness theorem). Assume that a1 (x) , . . . ,an (x) as well as f (x)
are continuous functions defined on the interval (a,b). Then, for any x0 ∈ (a,b) and for any numbers
y0, . . . ,yn−1, the initial value problem

y(n)+a1 (x)y(n−1)+ . . .+an (x)y = f (x)

y(x0) = y0

y′ (x0) = y1

... =
...

y(n−1) (x0) = yn−1

has a unique solution defined on (a,b). Especially if a j (x) and f (x) are continuous on R, then for any
x0 and y0, . . . ,yn−1, the initial value problem has a unique solution defined on R.

Corollary 2.1. Let y = y(x) be a solution to the homogeneous equation

y(n)+a1 (x)y(n−1)+ . . .+an−1 (x)y′+an (x)y = 0 in an interval (a,b) .

Assume that there exists x0 ∈ (a,b) such that

y(x0) = 0 y′ (x0) = 0 . . . y(n−1) (x0) = 0.

Then, y(x) = 0 on (a,b).

We consider general solutions to both the homogeneous and non-homogeneous cases. Given continuous
functions a j (x), where 0 ≤ j ≤ n and f (x), define an operator L as follows:

L [y] = a0 (x)y(n)+a1 (x)y(n−1)+ . . .+an (x)y

Then, the following properties hold:
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Proposition 2.1. We have the following:
(i) L [cy] = cL [y] for any constant c

(ii) L [u+ v] = L [u]+L [v]
An operator satisfying these properties is said to be a linear operator.

Example 2.1. The differential operator L is a linear operator.

Note that the homogeneous and non-homogeneous equations discussed at the start of this chapter can be
written as

L [y] = 0 and L [y] = f (x) respectively.

As such, we obtain the following:

Theorem 2.2. The following hold:
(i) Superposition principle: If y1 and y2 are solutions of the homogeneous equation in an interval

(a,b), then for any constants c1 and c2,

y = c1y1 + c2y2 is also a solution to the homogeneous equation on (a,b) .

(ii) If yp is a solution to the non-homogeneous equation (called a particular solution) and yh is a
solution to the homogeneous equation on (a,b), then

y = yh + yp is also a solution to the non-homogeneous equation on (a,b) .

In order to discuss the structure of solutions, we need to introduce the idea of linear independence.

Definition 2.1 (linear independence). Functions φ1 (x) , . . . ,φk (x) are linearly dependent on (a,b) if
there exist constants c1, . . . ,ck, not all zero, such that

c1φ1 (x)+ . . .+ ckφk (x) = 0 for all x ∈ (a,b) .

A set of functions is linearly independent on (a,b) if they are not linearly dependent on (a,b) .

Lemma 2.1. Functions φ1 (x) , . . . ,φk (x) are linearly dependent on (a,b) if and only if the following
vector values functions

φ1

φ ′
1
...

φ
(n−1)
1

 , . . . ,


φk

φ ′
k
...

φ
(n−1)
k

 are linearly dependent on (a,b) .

Definition 2.2 (Wronskian). Let φ1 (x) , . . . ,φn (x) be n functions. We define their Wronskian W to be

W (φ1, . . . ,φn)(x) = det


φ1 . . . φn
...

. . .
...

φ
(n−1)
1 . . . φ

(n−1)
n


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Theorem 2.3. Let y1 (x) , . . . ,yn (x) be n solutions of

y(n)+a1 (x)y(n−1)+ . . .+an−1 (x)y′+an (x)y = 0

on (a,b) and W be their Wronskian.
(i) y1 (x) , . . . ,yn (x) are linearly dependent on (a,b) if and only if W (x) = 0 on (a,b)

(ii) y1 (x) , . . . ,yn (x) are linearly independent on (a,b) if and only if W (X) does not vanish on (a,b)

Corollary 2.2. The Wronskian of n solutions of

y(n)+a1 (x)y(n−1)+ . . .+an−1 (x)y′+an (x)y = 0

is either identically zero, or nowhere zero. Also, n solutions y1, . . . ,yn of

y(n)+a1 (x)y(n−1)+ . . .+an−1 (x)y′+an (x)y = 0

are linearly independent on (a,b) if and only if the set of vectors
y1 (x0)

y′1 (x0)
...

y(n−1)
1 (x0)

 , . . . ,


yn (x0)

y′n (x0)
...

y(n−1)
n (x0)


are linearly independent for some x0 ∈ (a,b).

Example 2.2. Consider the differential equation

d2y
dx2 −

1
x

dy
dx

= 0 for x > 0.

Both φ1 (x) = 1 and φ2 (x) = x2 are solutions of the differential equation. Also,

W (φ1,φ2)(x) = det

[
1 x2

0 2x

]
= 2x ̸= 0 as x > 0.

Thus, φ1 and φ2 are linearly independent solutions.

Theorem 2.4. We have the following:
(i) Let a1 (x) , . . . ,an (x) and f (x) be continuous on the interval (a,b). The homogeneous equation

y(n)+a1 (x)y(n−1)+ . . .+an−1 (x)y′+an (x)y = 0

has n linearly independent solutions on (a,b).
(ii) Let y1, . . . ,yn be n linearly independent solutions of

y(n)+a1 (x)y(n−1)+ . . .+an−1 (x)y′+an (x)y = 0

defined on (a,b). The general solution to this differential equation is

y(x) = c1y1 (x)+ . . .+ cnyn (x) for some constants c1, . . . ,cn.
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2.2. Linear Equations with Constant Coefficients

We begin with second-order linear equations with constant coefficients, i..e

d2y
dx2 +a

dy
dx

+by = 0.

Here, a and b are constants. We look for a solution of the form y = eλx. Substituting this into the differential
equation, we see that

eλx is a solution to y′′+ay′+by = 0 if and only if λ
2 +aλ +b = 0.

This equations is called the auxiliary equation or the characteristic equation of the differential equation. The
roots of the characteristic equation are called characteristic values, or eigenvalues. As such,

λ1 =
−a+

√
a2 −4b

2
and λ2 =

−a−
√

a2 −4b
2

.

Theorem 2.5. Based on our earlier discussion, we have three cases to consider.
(i) If a2 − 4b > 0, then the characteristic equation has two real and distinct roots λ1 and λ2, and the

general solution to the differential equation is

y = c1eλ1x + c2eλ2x.

(ii) If a2 −4b = 0, then the characteristic equation has only one real root λ , i.e. λ1 = λ2. The general
solution to the differential equation is

y = c1eλ1x + c2xeλ2x.

(iii) If a2 −4b < 0, then the characteristic equation has a pair of complex conjugate roots

λ1 = α +βi and λ2 = α −β i.

So, the general solution to the differential equation is

y = c1eαx cosβx+ c2eαx sinβx.

Example 2.3. Solve

d2y
dx2 +

dy
dx

−2y = 0 with initial conditions y(0) = 4 and y′ (0) =−5.

Solution. Check that the roots of the characteristic equation are λ1 = 1 and λ2 = −2 so the solution to the
differential equation is y = ex +3e−2x. □

Example 2.4. Solve the differential equation

d2y
dx2 −4

dy
dx

+4y = 0 with initial conditions y(0) = 3 and y′ (0) = 1.

Solution. The roots of the characteristic equation are repeated, i.e. λ1 = λ2 = 2. One checks that the solution
to the differential equation is y = (3−5x)e2x. □

Example 2.5. Solve the differential equation

d2y
dx2 −2

dy
dx

+10y = 0.
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Solution. The roots of the characteristic equation are λ1 = 1+ 3i and λ2 = 1− 3i. As such, it is clear that the
general solution to the differential equation is y = ex (c1 cos3x+ c2 sin3x). □

Now, we consider nth order homogeneous linear equations with constant coefficients, i.e.

y(n)+a1y(n−1)+ . . .+an−1y′+any = 0,

where a1, . . . ,an are real constants. Again, y = eλx is a solution to the differential equation if and only if λ

satisfies the characteristic equation

λ
n +a1λ

n−1 + . . .+an−1λ +an = 0.

Let λ1, . . . ,λn be the distinct eigenvalues of the characteristic equation. Then, we can write

λ
n +a1λ

n−1 + . . .+an−1λ +an = (λ −λ1)
m1 (λ −λ2)

m2 . . .(λ −λs)
ms

where m1, . . . ,ms ∈N and m1+ . . .+ms = n. We call the mi’s the multiplicity of the eigenvalues λi respectively.

Lemma 2.2. Assume that λ is an eigenvalue of the differential equation

y(n)+a1y(n−1)+ . . .+an−1y′+any = 0 of multiplicity m.

Then, the following hold:
(i) eλx is a solution to the differential equation

(ii) If m > 1, then for any positive integer 1 ≤ k ≤ m−1, xkeλx is a solution to the differential equation
(iii) If λ = α +β i, then

xkeαx cosβx and xkeαx sinβx are solutions of the differential equation, where 0 ≤ k ≤ m−1

We then discuss solutions to the non-homogeneous equation

d2y
dx2 +P(x)

dy
dx

+Q(x)y = f (x) .

The associated homogeneous equation is

d2y
dx2 +P(x)

dy
dx

+Q(x)y = 0,

for which this method also applies to higher-order equations.

First, we have the variation of parameters. Let y1 and y2 be two linearly independent solutions of the associated
homogeneous equation

d2y
dx2 +P(x)

dy
dx

+Q(x)y = 0

and let W (x) be their Wronskian. We look for a particular solution to the non-homogeneous equation of the
form

yp (x) = u1 (x)y1 (x)+u2 (x)y2 (x)

where u1 and u2 are functions to be determined. Suppose

u′1y1 +u′2y2 = 0.
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Differentiating this equation once, we obtain

u′′1y1 +u′′2y2 =−u′1y′1 −u′2y′2.

As such, we obtain

u′1y′1 +u′2y′2 = f

which implies u′1 and u′2 satisfy

u′1y1 +u′2y2 = 0 and u′1y′1 +u′2y′2 = f .

Solving this system, we obtain

u′1 =− y2

W
f and u′2 =

y1

W
f .

Integrating both yield

u1 (x) =−
∫ x

x0

y2 (t)
W (t)

f (t) dt and u2 (x) =
∫ x

x0

y1 (t)
W (t)

f (t) dt.

Example 2.6. Solve the differential equation

d2y
dx2 + y = secx.

Solution. A basis for the solutions of the homogeneous equation consists of y1 = cosx and y2 = sinx. Note that
the Wronskian W (y1,y2) = 1 so

u1 =−
∫

sinxsecx dx = ln |cosx|+ c1

u2 =
∫

cosxsecx dx = x+ c2

From this, a particular solution is obtained by

yp = cosx ln |cosx|+ xsinx

so the general solution is

y = c1 cosx+ c2 sinx+ cosx ln |cosx|+ xsinx.

□

The method of variation of parameters can also be used to find another solution of a second-order
homogeneous linear differential equation when one solution is given. Suppose z is a known solution to the
equation

d2y
dx2 +P(x)

dy
dx

+Q(x)y = 0.

Assume that y = vz is a solution so one can deduce that

v′′

v′
=−2

(
z′

z

)
−P.

As such,

v′ =
1
z2 e−

∫
P dx so v =

∫ 1
z2 e−

∫
P dx.

One can show that z and vz are linearly independent solutions by computing their Wronskian.
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Example 2.7. Given that y1 = x is a solution to

x2 d2y
dx2 + x

dy
dx

− y = 0,

find another solution.

Solution. We shall write the differential equation as

d2y
dx2 +

1
x

dy
dx

− 1
x2 y = 0.

Then, P(x) = 1/x. Assume that y= vx is another linearly independent solution. Differentiating both sides yields

dy
dx

= v+ x
dv
dx

so
d2y
dx2 = 2

dv
dx

+ x
d2v
dx2

Hence,

2
dv
dx

+ x
d2v
dx2 +

1
x

(
v+ x

dv
dx

)
− vx

x2 = 0

x
d2v
dx2 +3

dv
dx

= 0

We see that we deviated from the method that was suggested but anyway, this new differential equation is
known as a Cauchy-Euler equation which we will mention in due course. We will not discuss the method here
(fairly straightforward just like finding the characteristic equation of the corresponding differential equation)
but anyway,

v =− 1
2x2 so y =− 1

2x
.

As such, the general solution is y = c1x+ c2/x. □

Next, we also have the method of undetermined coefficients. Consider the equation

d2y
dx2 +a

dy
dx

+by = f (x) ,

where a and b are real constants.
• Case 1: Suppose f (x) = Pn (x)eαx, where Pn (x) is a polynomial of degree n ≥ 0. We look for a particular

solution of the form y = Q(x)eαx, where Q(x) is a polynomial. Substituting this into the original
differential equation, we obtain

Q′′+(2α +a)Q′+
(
α

2 +aα +b
)

Q = Pn (x) .

– Subcase 1: Suppose α2+aα +b ̸= 0, i.e. α is not a root of the characteristic equation. Then, we can
choose Q = Rn, which is a polynomial of degree n, and y = Rn (x)eαx. The coefficients of Rn can be
determined by comparing the terms of the same power on the two sides of the above equation.

– Subcase 2: If α2 + aα + b = 0 but 2α + a ̸= 0, i.e. α is a simple root (of multiplicity 1) of the
characteristic equation, then the equation above is reduced to

Q′′+(2α +a)Q′ = Pn.

We choose Q to be a polynomial of degree n+ 1. Since the constant term of Q does not appear in
Q′′+(2α +a)Q′ = Pn, we can choose Q(x) = xRn (x), where Rn (x) is a polynomial of degree n. As
such, y = xRn (x)eαx.
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– Subcase 3: If α2 + aα + b = 0 and 2α + a = 0, then α is a root of the characteristic equation
of multiplicity 2. As such, we obtain Q′′ = Pn so we choose Q(x) = x2Rn (x), where Rn (x) is a
polynomial of degree n. As such, y = x2Rn (x)eαx.

We first deal with some examples.

Example 2.8. Find the general solution to the differential equation

d2y
dx2 −

dy
dx

−2y = 4x2.

Solution. The solution to the homogeneous equation is yh = c1e2x+c2e−x. We then try to deduce the particular
solution, for which we infer that y should be a quadratic polynomial ax2 + bx+ c. Substituting this into the
original differential equation, one should deduce that yp =−2x2 +2x−3. □

Example 2.9. Find a particular solution to the differential equation

d3y
dx3 +2

d2y
dx2 −

dy
dx

= 3x2 −2x+1.

Solution. Similar to Example 2.8, we infer that the particular solution yp should be some cubic polynomial
ax3 + bx2 + cx + d. Substituting this into the differential equation, one should be able to obtain that yp =

−x3 −5x2 −27x. □

Example 2.10. Solve the differential equation

d2y
dx2 −2

dy
dx

+ y = xex.

Solution. The solution to the homogeneous equation is yh = c1ex+c2xex. One checks that the particular solution
is of the form yp = cx2ex. However, this fails so we try yp = cx3ex. This works and in fact, one can deduce that
c = 1/6. □

We return to our casework.
• Case 2: Suppose

f (x) = Pn (x)eαx cosβx or f (x) = Pn (x)eαx sinβx,

where Pn (x) is a polynomial of degree n ≥ 0. We first look for a solution to the differential equation

y′′+ay′+b′ = Pn (x)e(α+β i)x.

We obtain a complex-valued solution where u(x) = Rez and v(x) = Imz. Substituting z(x) = u(x)+v(x)
into y′′+ ay′+ b′ = Pn (x)e(α+β i)x and taking the real and imaginary parts, we deduce that u(x) = Rez
and v(x) = Imz are solutions to

d2y
dx2 +a

dy
dx

+by = Pn (x)eαx cosβx and
d2y
dx2 +a

dy
dx

+by = Pn (x)eαx sinβx respectively.

Example 2.11. Solve the differential equation

d2y
dx2 −2

dy
dx

+2y = ex cosx.

Solution. The solution to the homogeneous equation is yh = c1ex cosx + c2ex sinx. Suppose the particular
solution is of the form

yp = P(x)ex (Acosx+Bsinx) .

Substituting this into the original differential equation, one can deduce that the particular solution is 1
2 xex sinx.

Combining the homogeneous solution yh and the particular solution yp, we obtain the general solution. □
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Theorem 2.6. Let y1 and y2 be particular solutions of the equations

y′′+ay′+by = f1 (x) and y′′+ay′+by = f2 (x) respectively.

Then, yp = y1 + y2 is a particular solution of

y′′+ay′+by = f1 (x)+ f2 (x) .

Example 2.12. Solve the differential equation

d2y
dx2 − y = ex + sinx.

Solution. A particular solution for y′′−y= ex is given by y1 =
1
2 xex. Also, a particular solution for y′′−y= sinx

is given by y2 = −1
2 sinx. As such, we obtain the particular solution yp = 1

2 (xex − sinx). The homogeneous
solution is c1e−x + c2ex, where c1 and c2 are constants. As such, the general solution is

y = c1e−x + c2ex +
1
2
(xex − sinx) .

□

2.3. Operator Methods

Definition 2.3 (differential operator). Let x denote independent variable, and y be a dependent
variable. Define

Dy =
d
dx

y and Dny =
dn

dxn y = y(n).

Also, let D0y = y. Given a polynomial

L(x) =
n

∑
j=0

a jx j where a j are constants,

define a differential operator L(D) by

L(D)y =
n

∑
j=0

a jD jy.

The equation
n

∑
j=0

a jy( j) = f (x) can be written as L(D)y = f (x) .

Proposition 2.2. Let [L(D)]−1 f denote any solution of L(D)y = f (x). Then, we have

D−1D = DD−1 = D0 and [L(D)]−1 L(D) = L(D) [L(D)]−1 = D0.

However, [L(D)]−1 f is not unique.

Proof. To see why these properties hold, recall that D−1 f means a solution to y′ = f . Hence, D−1 f can be
regarded as the integral operator

D−1 f =
∫

f .
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As such, it follows that

D−1D = DD−1 = identity operator D0.

As for the second equality, note that a solution to L(D)y = L(D) f is simply f . By definition of [L(D)]−1, we
have [L(D)]−1 [L(D) f ] = f , so [L(D)]−1 L(D) = D0. Lastly, since [L(D)]−1 f is a solution to L(D)y = f (x),
the result follows.

More generally, we have the following proposition:

Proposition 2.3. We have the following:
(i)

D−1 f (x) =
∫

f (x) dx+ c

(ii)

(D−a)−1 f (x) =Ceax + eax−ax f (x) dx

(iii)

L(D)(eax f (x)) = eaxL(D+a) f (x)

(iv)

[L(D)]−1 (eax f (x)) = eax [L(D+a)]−1 f (x)

Let L(x) = (x− r1) . . .(x− rn). The solution to L(D)y = f (x) is

y = [L(D)]−1 f (x) = [(D− r1)]
−1 . . . [(D− rn)]

−1 f (x) .

Then, we obtain the solution by successive integration. Moreover, if the r j’s are distinct, we can write

1
L(x)

=
A1

x− r1
+ . . .+

An

x− rn
,

where the A j’s can be found by the method of partial fractions. As such, the solution is

y =
[
[A1 (D− r1)]

−1 + . . .+[An (D− rn)]
−1
]

f (x) .

For the case of repeated roots, let the multiple root be m and the equation to be solved be

(D−m)n y = f (x) .

To solve this equation, assume a solution of the form y = emxv(x), where v(x) is to be determined. One can
verify that (D−m)n emxv = emxDnv, so (D−m)n y = f (x) reduces to Dnv = e−mx f (x). Integrating this n times,
we obtain

v =
∫

. . .
∫

e−mx f (x) dx . . .dx+ c0 + c1x+ . . .+ c1xn−1

and we conclude that

(D−m)−n f (x) = emx
∫

. . .
∫

e−mx f (x) dx . . .dx+ c0 + c1x+ . . .+ cn−1xn−1
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Example 2.13. Solve (
D2 −3D+2

)
y = xex.

Solution. By partial fraction decomposition, we have
1

D2 −3D+2
=

1
D−2

− 1
D−1

.

Hence,

y =
(
D2 −3D+2

)−1
(xex)

= (D−2)−1 (xex)− (D−1)−1 (xex)

= e2xD−1 (e−2xxex)− exD−1 (e−xxex)
= e2xD−1 (xe−x)− exD−1 (x)

= e2x (−xe−x − e−x + c1
)
− ex

(
1
2

x2 + c2

)
=−ex

(
1
2

x2 + x+1
)
+ c1e2x + c2ex

□

Example 2.14. Solve (
D3 −3D2 +3D−1

)
y = ex.

Solution. By the binomial theorem, we see that the differential equation is equivalent to

(D−1)3 y = ex.

As such,

y = (D−1)−3 ex = ex
(∫∫∫

e−xex dx+ c0 + c1x+ c2x2
)

= ex
(

1
6

x3 + c0 + c1x+ c2x2
)

□

Note that if f (x) is a polynomial in x, then

(1−D)
(
1+D+D2 + . . .

)
f = f .

As such, (1−D)−1 ( f ) =
(
1+D+D2 + . . .

)
f . So, if f is a polynomial, we may formally expand (D− r)−1

into power series in D and apply it to f . If deg f = n, then it is only necessary to expand (D− r)−1 up to Dn.

Example 2.15. Solve (
D4 −2D3 +D2)y = x3.

Solution. We have

y =
(
D4 −2D3 +D2)−1

f

=
1

D2 (1−D)2 x3

= D−2 (1+2D+3D2 +4D3 +5D4 +6D5 + . . .
)

x3

= D−2 (x3 +6x2 +18x+24
)

= D−1
(

1
4

x4 +2x3 +9x2 +24x
)

=
1

20
x5 +

1
2

x4 +3x3 +12x2
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As such, the general solution is

y = (c1 + c2x)ex +(c3 + c4x)+
1

20
x5 +

1
2

x4 +3x3 +12x2.

□
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3. Second-Order Linear Differential Equations

3.1. Exact Second-Order Equations

Definition 3.1 (exact equation). The general second-order linear differential equation is of the form

p0 (x)y′′+ p1 (x)y′+ p2 (x)y = f (x) .

The equation can be written as(
p0y′− p′0y

)′
+(p1y)′+

(
p′′0 − p′1 + p2

)
y = f (x) .

We say that

the differential equation is exact if p′′0 − p′1 + p2 = 0.

Theorem 3.1. In relation to Definition 3.1, if the differential equation is exact, we have

p0 (x)y′− p′0 (x)y+ p1 (x)y =
∫

f (x) dx+ c1.

Example 3.1. Find the general solution to the differential equation

1
x

d2y
dx2 +

(
1
x
− 2

x2

)
dy
dx

−
(

1
x2 −

2
x3

)
y = ex.

Solution. Here,

p0 (x) =
1
x

p1 (x) =
1
x
− 2

x2 p2 (x) =
2
x3 −

1
x2 .

One checks that p′′0 − p′1 + p2 = 0. By Theorem 3.1, we have

1
x

dy
dx

+
1
x2 y+

(
1
x
− 2

x2

)
y = ex + c1

dy
dx

+

(
1− 1

x

)
y = xex + c1x

By the method of integrating factor, one can deduce that

y =
1
2

xex + c1x+ c2xe−x.

□

3.2. The Adjoint Differential Equation and Integrating Factor

Recall the differential equation

p0 (x)y′′+ p1 (x)y′+ p2 (x)y = f (x) .

Suppose this is multiplied by a function v(x) so that the resulting equation is exact. Then, v(x) is said to be an
integrating factor of the differential equation. That is,

(p0v)′′− (p1v)′+ p2v = 0.

This is a differential equation in terms of v, which is, more explicitly, by the product rule,

p0(x)v′′+(2p′0(x)− p1(x))v′+(p′′0(x)− p′1(x)+ p2(x))v = 0.
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This equation is called the adjoint of the original differential equation. Thus, we see that a function v(x) is an
integrating factor for a given differential equation if and only if it is a solution of the adjoint equation. Note
that the adjoint is in turn found to be the associated homogeneous equation of the original differential equation,
thus each is the adjoint of the other.

In this case, a first integral is

v(x)p0(x)y′− (v(x)p0(x))′y+ v(x)p1(x)y =
∫

v(x) f (x) dx+ c.

Example 3.2. Find the general solution of the differential equation

(x2 − x)y′′+(2x2 +4x−3)y′+8xy = 1.

Solution. The adjoint of this equation is

(x2 − x)v′′− (2x2 −1)v′+(4x−2)v = 0.

By trying powers of xm, one checks that v = x2 satisfies this equation. In turn, x2 is an integrating factor of the
original differential equation. Multiplying it by x2, we obtain

(x4 − x3)y′′+(2x4 +4x3 −3x2)y′+8x3y = x2.

Hence, a first integral is

(x4 − x3)y′− (4x3 −3x2)y+(2x4 +4x3 −3x2)y =
∫

x2 dx+ c.

Upon simplification, we have

y′+
2x

x−1
y =

1
3(x−1)

+
c

x3(x−1)
.

One can use the method of integrating factor to deduce that

y =
1

(x−1)2

(
x
6
− 1

4
+

c1

x2 + c2e−2x
)
.

□

Example 3.3. The differential equation

(p(x)y′)′+q(x)y+λ r(x)y = 0

is called a Sturm-Liouville equation, where λ is a real parameter (often called an eigenvalue parameter), and
the functions p(x),q(x),r(x) are given with p(x)> 0 and r(x)> 0 on some interval. It is a well-known fact that
the Sturm-Liouville operator is self-adjoint under suitable boundary conditions. This means that the adjoint of
the differential operator

L[y] :=−(p(x)y′)′+q(x)y

is the operator itself, in the sense of the inner product

⟨ f ,g⟩=
∫ b

a
f (x)g(x)r(x)dx.

To see why this is the case, note that we can write the equation as

−(p(x)y′)′+q(x)y = λ r(x)y.

The formal adjoint of the operator L can be computed using integration by parts and turns out to be identical to
L when the functions and boundary conditions are chosen appropriately. Hence, Sturm-Liouville operators are
self-adjoint in the formal sense.
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3.3. Lagrange’s Identity and Green’s Formula

Recall the differential equation p0 (x)y′′+ p1 (x)y′+ p2 (x)y = f (x). Let L be the differential operator given
by the left side of this equation, i.e. L[y] = p0(x)y′′+ p1(x)y′+ p2(x)y. The formal adjoint of L is the differential
operator defined by L+[y] = (p0(x)y)′′−(p1(x)y′)′+(p2(x)y, where p′′0, p′1 and p2 are continuous on an interval
[a,b]. Let u and v be functions having continuous second-order derivatives on [a,b]. Direct simplification yields
Lagrange’s identity (Theorem 3.2) relating L and L+.

Theorem 3.2 (Lagrange’s identity). Let P(u,v) = up1v−u(p0v)′+u′p0v. Then,

L[u]v−uL+[v] =
d
dx

[P(u,v)].

Integrating both sides of Lagrange’s identity yields Green’s formula (Corollary 3.1).

Corollary 3.1 (Green’s formula). We have∫ b

a
(L[u]v−uL+[v]) dx = P(u,v)(b)−P(u,v)(a).

3.4. Regular Boundary Value Problem

The problem of finding a solution to a second-order linear differential equation

y′′+ p(x)y′+q(x)y = f (x) where x ∈ (a,b)

satisfying the boundary conditions

a11y(a)+a12y′(a)+b11y(b)+b12y′(b) = d1

a21y(a)+a22y′(a)+b21y(b)+b22y′(b) = d2

is known as a two-point boundary value problem. When d1 = d2 = 0, the boundary conditions are said to be
homogeneous; otherwise we refer to them as non-homogeneous.

Proposition 3.1. For the homogeneous equation y′′ + p(x)y′ + q(x)y = 0 for all a < x < b with
homogeneous boundary condition, we have the following properties:

(i) If φ(x) is a non-trivial solution, then so is cφ(x) for any constant c. That is, the differential equation
has a one-parameter family of solutions.

(ii) If the differential equation has two linearly independent solutions φ1(x) and φ2(x), then any linear
combination c1φ1(x)+c2φ2(x) is also a solution to the differential equation for any constants c1,c2.
Thus, the equation has a two-parameter family of solutions.

(iii) The remaining possibility is that φ(x) = 0 is the unique solution to the differential equation

For the case where the equation is non-homogeneous, there is a possibility that it has no solution. We give
some examples to illustrate these cases.

Example 3.4. Find all solutions to the boundary value problem

y′′+2y′+5y = 0 where y(0) = 2 and y
(

π

4

)
= e−π/4.

Solution. The general solution to the equation y′′+2y′+5y = 0 is y = c1e−x cos2x+ c2e−x sin2x. Substituting
the boundary conditions, one can deduce that c1 = 2 and c2 = 1 so the boundary value problem has the unique
solution y = 2e−x cos2x+ e−x sin2x. □
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Example 3.5. Find all solutions to the boundary value problem

y′′+ y = cos2x where y′(0) = 0 and y′(π) = 0.

Solution. The general solution to the equation y′′+ y = cos2x is y = c1 cosx+ c2 sinx− 1
3 cos2x. Thus, y′ =

−c1 sinx + c2 cosx + 2
3 sin2x. Substituting the boundary conditions, we have c2 = 0, so the boundary value

problem has a one-parameter family of solutions y = c1 cosx− 1
3 cos2x, where c1 ∈ R. □

Example 3.6. Find all solutions to the boundary value problem

y′′+4y = 0 where y(−π) = y(π) and y′(−π) = y′(π).

Solution. The general solution to the equation y′′ + 4y = 0 is y = c1 cos2x + c2 sin2x. One checks that the
boundary value problem has a two-parameter family of solutions y = c1 cos2x+c2 sin2x, where c1,c2 ∈R. □

Example 3.7. Find all solutions to the boundary value problem

y′′+4y = 4x where y(−π) = y(π) and y′(−π) = y′(π).

Solution. The general solution to the equation y′′ + 4y = 4x is y = x+ c1 cos2x+ c2 sin2x. Since y(−π) =

−π +c1 and y(π) = π +c1, there are no solutions satisfying y(−π) = y(π). Hence, the boundary value problem
has no solution. □

3.5. Regular Sturm-Liouville Boundary Value Problem

Let L[y] = (p(x)y′)′+q(x)y. Consider the regular Sturm-Liouville boundary value problem L[y]+λ r(x)y =
0 with a < x < b, where a1y(a) + a2y′(a) = 0 and b1y(b) + b2y′(b) = 0. Here, p(x), p′(x),q(x),r(x) are
continuous functions on [a,b] and p(x),r(x) > 0 on [a,b]. We will exclude the cases where a1 = a2 = 0 or
b1 = b2 = 0.

Let u and v be functions that have continuous second derivatives on [a,b] and satisfy the boundary conditions.
The boundary conditions imply that W (u,v)(b) = W (u,v)(a) = 0. This is because the system of equations
a1u(a)+ a2u′(a) = 0, a1v(a)+ a2v′(a) = 0 has non-trivial solutions in a1 and a2 since a1 and a2 are not both
zero. Therefore the determinant of the system W (u,v)(a) must be zero. Similarly W (u,v)(b) = 0.

Thus by Green’s formula (Corollary 3.1), we have ([L]u,v) = (u, [L]v). Therefore, L is a self-adjoint operator
with domain equal to the set of functions that have continuous second derivatives on [a,b] and satisfy the
boundary conditions. Self-adjoint operators are like symmetric matrices in that their eigenvalues are always
real.

Here we only require u and v satisfy the boundary conditions in (3.5.13) but not necessarily the differential
equation L[y]+λ r(x)y = 0. However, if u and v satisfy the differential equation, then L[u]v = uL[v] = −λ ruv
and hence,

([L]u,v) = (u, [L]v)

too.

The regular Sturm-Liouville boundary value problem involves a parameter λ . The objective is to determine
for which values of λ , the equation has non-trivial solutions satisfying the given boundary conditions.
Such problems are called eigenvalue problems. The non-trivial solutions are called eigenfunctions, and the
corresponding number λ an eigenvalue. If all the eigenfunctions associated with a particular eigenvalue are just
scalar multiples of each other, then the eigenvalue is called simple.
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Theorem 3.3. All the eigenvalues of the regular Sturm-Liouville boundary value problem are real, have
real-valued eigenfunctions and simple.

Two real-valued functions f and g defined on [a,b] are said to be orthogonal with respect to a positive
weight function r(x) on the interval [a,b] if∫ b

a
f (x)g(x)r(x)dx = 0.

Theorem 3.4. Eigenfunctions that correspond to distinct eigenvalues of the regular Sturm-Liouville
boundary value problem in are orthogonal with respect to the weight function r(x) on [a,b].

Theorem 3.5. The eigenvalues of the regular Sturm-Liouville boundary value problem form a
countable, increasing sequence

λ1 < λ2 < λ3 < · · · , with lim
n→∞

λn =+∞.

Example 3.8. Consider the regular Sturm-Liouville boundary value problem

y′′+λy = 0, y(0) = y(π) = 0.

When λ ≤ 0, the boundary value problem has only the trivial solution y = 0. Thus for λ ≤ 0, it is not an
eigenvalue. Let us consider λ > 0. The general solution to the equation y′′+λy = 0 is given by

y = Acos(
√

λx)+Bsin(
√

λx).

Now y(0) = 0 implies that A= 0, and y(π) = 0 implies that Bsin(
√

λπ) = 0. Since we are looking for nontrivial
solutions, we must have B ̸= 0 so that sin(

√
λπ)= 0. Therefore λ = n2, where n= 1,2,3, . . . with corresponding

eigenfunctions φn(x) = Bn sin(nx). One can easily verify that (φm,φn) = 0 for m ̸= n.

Thus, associated to a regular Sturm-Liouville boundary value problem, there is a sequence of orthogonal
eigenfunctions {φn} defined on [a,b]. We can use these eigenfunctions to form an orthonormal system with
respect to r(x) simply by normalising each eigenfunction φn so that∫ b

a
φ

2
n (x)r(x)dx = 1.

Now suppose {φn} is orthonormal with respect to a positive weight function r(x) on [a,b], that is

∫ b

a
φn(x)φm(x)r(x)dx =

0, n ̸= m;

1, n = m.

Then with any piecewise continuous function f on [a,b], we can identify an orthogonal expansion

f (x)∼
∞

∑
n=1

cnφn(x),

where

cn =
∫ b

a
f (x)φn(x)r(x)dx.

For instance, the eigenfunctions φn(x) = sinnx gives rise to the Fourier sine series expansion. Like the theory
of Fourier series, the eigenfunction expansion of f converges uniformly to f on [a,b] under suitable conditions.
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Theorem 3.6. Let {φn} be an orthonormal system of eigenfunctions for the regular Sturm-Liouville
boundary value problem. Let f be a continuous function on [a,b] such that f ′ is piecewise continuous on
[a,b], and f satisfies the boundary conditions. Then

f (x) =
∞

∑
n=1

cnφn(x) a ≤ x ≤ b

where

cn =
∫ b

a
f (x)φn(x)r(x)dx.

Furthermore, the eigenfunction expansion converges uniformly on [a,b].

3.6. Non-Homogeneous Boundary Value Problems

Of interest now are non-homogeneous regular Sturm-Liouville boundary value problems with homoge-
neous boundary conditions. Let L[y] = f (x) where a < x < b and a1y(a)+a2y′(a) = 0 and b1y(b)+b2y′(b) = 0,
where L[y] = (p(x)y′)′+ q(x)y, p(x), p′(x),q(x) are continuous functions on [a,b] and p(x) > 0 on [a,b], and
f (x) is continuous on [a,b].

Theorem 3.7. The non-homogeneous problem has a unique solution if and only if the homogeneous
problem has only the trivial solution.

Example 3.9. Find the Green’s function G(x, t) for the boundary value problem

y′′ = f where y(0) = 0 and y(π) = 0.

Solution. A general solution to y′′ = 0 is y=Ax+B. Thus, y1 = x is a solution satisfying y(0) = 0, and y= π−x
is a solution satisfying y(π) = 0. Also, y1 and y2 are linearly independent. As such, the Green’s function is

G(x, t) =


t(x−π)

π
if 0 ≤ t ≤ x;

x(t−π)
π

if x ≤ t ≤ π.

Hence, for f (x) =−6x, the solution is given by

y(x) =
∫

π

0
G(x, t) f (t) dt = x

(
π

2 − x2) .
Since the homogeneous problem y′′ = 0, where y(0) = 0 and y(π) = 0, has only the trivial solution, the above
solution to the homogeneous problem y′′ =−6x with y(0) = 0 and y(π) = 0 is unique. □

We can strengthen Theorem 3.7 as follows (Theorem 3.8):

Theorem 3.8 (Fredholm). The non-homogeneous problem has a solution if and only if for every
solution y(x) of the homogeneous problem, we have∫ b

a
f (t)y(t) dt = 0.

Example 3.10. Show that the boundary value problem

y′′+ y′+
5
2

y = f where y(0) = 0 and y
(

2π

3

)
= 0

has a solution if ∫ 2π/3

0
ex/2 sin

(
3x
2

)
f (x) dx = 0.
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Solution. Consider the homogeneous boundary value problem y′′+ y′+ 5
2 y = 0, with y(0) = 0 and y

(2π

3

)
= 0.

The general solution of the homogeneous equation is y = e−x/2
(
Acos

(3x
2

)
+Bsin

(3x
2

))
. Since y(0) = 0, then

A= 0. Thus, y=Be−x/2 sin
(3x

2

)
. This also satisfies y

(2π

3

)
= 0. Thus, the homogeneous boundary value problem

has a one parameter family of solutions. Note that the given differential equation is not self-adjoint, but we can
convert it into a self-adjoint equation by multiplying throughout by a factor ex. So, we may write the problem
as

(exy′)′+
5
2

exy = ex f (x) where y(0) = 0 and y
(

2π

3

)
= 0.

By Fredholm’s theorem (Theorem 3.8), this problem has a solution if and only if

∫ 2π/3

0
Be−x/2 sin

(
3x
2

)
· ex f (x) dx = 0

which is equivalent to the condition mentioned in the question. □

3.7. The Sturm Separation Theorem and the Sturm Comparison Theorem

Consider the homogeneous second-order linear differential equation y′′+P(x)y′+Q(x)y = 0. It is rarely
possible to solve this equation in general. However, by studying the properties of the coefficient functions, it
is sometimes possible to describe the behaviour of the solutions. One of the important characteristics that is of
interest is the number of zeros of a solution to the mentioned differential equation. If a function has an infinite
number of zeros in an interval [a,∞), we say that the function is oscillatory. Hence, studying the oscillatory
behaviour of a function means investigating the number and locations of its zeros.

As a motivation, consider the familiar equation y′′ + y = 0, which has two linearly independent solutions
s(x) = sinx satisfying y(0) = 0 and y′(0) = 1, and c(x) = cosx satisfying y(0) = 1 and y′(0) = 0 respectively.
The positive zeros of s(x) and c(x) are π,2π,3π, . . . and π

2 ,
3π

2 , 5π

2 , . . . respectively. Note that the zeros of s(x)
and c(x) are said to interlace one another in the sense that between two successive zeros of s(x), there is a zero
of c(x) and vice versa.

x

y

s(x) = sinx

c(x) = cosx

π 2π

π

2
3π

2

Figure 1: Interlacing of zeros of two linearly independent solutions

This property is described by the Sturm separation theorem (Theorem 3.9).

Theorem 3.9 (Sturm separation theorem). If y1(x) and y2(x) are two linearly independent solutions
to

y′′+P(x)y′+Q(x)y = 0,

then the zeros of these functions are distinct and occur alternatively in the sense that y1(x) vanishes
exactly once between any two successive zeros of y2(x) and conversely.
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Corollary 3.2. Suppose one non-trivial solution to y′′+P(x)y′+Q(x)y= 0 is oscillatory on [a,∞). Then,
all solutions are oscillatory.

Now, note that the equation y′′+P(x)y′+Q(x)y = 0 can be written in the form u′′+ q(x)u = 0 by setting
y= uv, where v= e−

1
2
∫

P dx and q(x)=Q(x)− 1
4(P(x))

2− 1
2 P′(x). We refer to the original differential equation as

the standard form and the transformed one as the normal form. Since v(x)> 0 for all x, the above transformation
has no effect on the zeros of the solutions, and therefore leaves unaltered the oscillation behaviour of the
solutions.

Example 3.11. By using the substitution y = e−
x3
3 u, find the general solution of the equation

y′′+2x2y′+(x4 +2x+1)y = 0.

Show that the distance between two consecutive zeros of any non-trivial solution is π .

Solution. We leave it to the reader to deduce that

y = Ae−
x3
3 sin(x−θ) .

Setting y = 0, we have sin(x−θ) = 0, so the result follows. □

Theorem 3.10 (Sturm comparison theorem). Let y1 be a non-trivial solution to y′′+q1(x)y = 0 and y2

be a non-trivial solution to y′′+q2(x)y = 0, where a < x < b. Assume that q2(x)≥ q1(x) for all a < x < b.
If x1 and x2 are two consecutive zeros of y1 on (a,b) with x1 < x2, then there exists a zero of y2 in (x1,x2),
unless q2(x) = q1(x) on [x1,x2] in which case y1 and y2 are linearly dependent.

Corollary 3.3. Suppose q(x)≤ 0 for all x ∈ [a,b]. If y is a non-trivial solution to y′′+q(x)y = 0 on [a,b],
then y has at most one zero on [a,b].

Example 3.12. The equation

x2y′′+ xy′+(x2 − p2)y = 0 where x > 0

is called Bessel’s equation of order p. For a > 0, we shall discuss the number of zeros in the interval [a,a+π).
The substitution y = ux−

1
2 transforms the mentioned equation to the one as follows:

d2u
dx2 +

(
1−

p2 − 1
4

x2

)
u = 0 where x > 0.

Since y = ux−
1
2 , the distribution of zeros of a solution y to the old differential equation is the same as the

corresponding solution u to the new equation. We shall compare the solutions to the new equation with those
to u′′+u = 0. Observe that u(x) = Asin(x−a) is a solution to u′′+u = 0 and has zeros at a and a+π .

• Case 1: Suppose p > 1/2. Then, 4p2 − 1 > 0 so 1 − p2− 1
4

x2 < 1 for all x ∈ [a,a+π). By the Sturm
comparison theorem (Theorem 3.10), a solution to the new equation cannot have more than one zero in
[a,a+π) because u(x) = Asin(x−a) does not have a zero in (a,a+π).

• Case 2: Next, suppose 0 ≤ p < 1/2. Then, 4p2 − 1 < 0 so that 1− p2− 1
4

x2 > 1 for x ∈ [a,a+π). Again
by the Sturm comparison theorem (Theorem 3.10), a solution to the new equation must have a zero in
(a,a+π) since a and a+π are consecutive zeros of u(x) = Asin(x−a).

• Case 3: If p = 1/2, then the differential equation reduces to u′′+u = 0, which has the general solution
u(x) = Asin(x−a). Consequently, it has exactly one zero in [a,a+π).
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4. Linear Differential Systems

4.1. Linear Systems

The following system is called a linear differential system of first order in normal form:
x′1 = a11(t)x1 + · · ·+a1n(t)xn +g1(t)
... =

...

x′n = an1(t)x1 + · · ·+ann(t)xn +gn(t)

where ai j(t) and g j(t) are continuous functions of t and ′ denotes differentiation with respect to t. Denote

x(t) =


x1(t)

...
xn(t)

 g(t) =


g1(t)

...
gn(t)

 A(t) =


a11(t) · · · a1n(t)

...
. . .

...
an1(t) · · · ann(t)

 .

Define

x′ =


x′1(t)

...
x′n(t)

 ∫
x(t)dt =


∫

x1(t)dt
...∫

xn(t)dt

 .

Then, the linear system can be written in the matrix form:

x′ = A(t)x+g(t).

When g ≡ 0, the above equation is reduced to x′ = A(t)x. This equation is called a homogeneous differential
system.

Example 4.1. The system

x′1 = 2x1 +3x2 +3t

x′2 =−x1 + x2 −7sin t

is equivalent to (
x1

x2

)′

=

(
2 3
−1 1

)(
x1

x2

)
+

(
3t

−7sin t

)
.

Example 4.2. Given a second order system

d2x
dt2 = x+2y+3t

d2y
dt2 = 4x+5y+6t

let u = x′ and v = y′. Then we have 
x′ = u,

u′ = x+2y+3t,

y′ = v,

v′ = 4x+5y+6t.

Next, we consider the initial value problem:

x′ = A(t)x+g(t)

x(t0) = x0,

where x0 is a constant vector.
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Theorem 4.1. Assume that A(t) and g(t) are continuous on an open interval a < t < b containing t0.
Then, for any constant vector x0, the initial value problem

x′ = A(t)x+g(t)

x(t0) = x0,

has a solution x(t) defined on this interval. This solution is unique. Also, if A(t) and g(t) are continuous
on R, then for any t0 ∈ R and x0 ∈ Rn, the initial value problem has a unique solution x(t) defined on R.

4.2. Homogeneous Linear Systems

Now, we assume A = (ai j(t)) is a continuous n×n matrix-valued function on (a,b).

Lemma 4.1. Let x(t) and y(t) be two solutions of x′ = A(t)x on (a,b). Then for any constants c1,c2,
the function z(t) = c1x(t)+ c2y(t) is also a solution of the differential system on (a,b).

Definition 4.1. x1(t), . . . ,xr(t) are linearly dependent on (a,b) if there exist constants c1, . . . ,cr, not all
zero, such that

c1x1(t)+ · · ·+ crxr(t) = 0 for all t ∈ (a,b).

Otherwise, they are linearly independent.

Lemma 4.2. A set of solutions x1(t), . . . ,xr(t) of x′ = A(t)x are linearly dependent on (a,b) if and only
if x1(t0), . . . ,xr(t0) are linearly dependent vectors for any fixed t0 ∈ (a,b).

Theorem 4.2. The following hold:
(i) The differential system in x′ = A(t)x has n linearly independent solutions

(ii) Let x1, . . . ,xn be any set of n linearly independent solutions of x′ = A(t)x on (a,b). Then the
general solution of the differential system is given by

x(t) = c1x1(t)+ · · ·+ cnxn(t)

where c j are arbitrary constants.

Definition 4.2 (Wronskian). The Wronskian of n vector-valued functions

x1(t) =


x11(t)

...
xn1(t)

 . . . xn(t) =


x1n(t)

...
xnn(t)


is defined as the determinant

W (t) =W (x1, . . . ,xn)(t) =

∣∣∣∣∣∣∣∣∣∣
x11(t) x12(t) · · · x1n(t)
x21(t) x22(t) · · · x2n(t)

...
...

. . .
...

xn1(t) xn2(t) · · · xnn(t)

∣∣∣∣∣∣∣∣∣∣
.



MA3220 ORDINARY DIFFERENTIAL EQUATIONS Page 37 of 62

Theorem 4.3. The following hold:
(i) The Wronskian of n solutions of x′ = A(t)x is either identically zero or nowhere zero in (a,b)

(ii) n solutions of x′=A(t)x are linearly dependent in (a,b) if and only if their Wronskian is identically
zero in (a,b)

A set of n linearly independent solutions of x′ = A(t)x is called a fundamental set of solutions, or a basis
of solutions. Let

x1(t) =


x11(t)

...
xn1(t)

 · · · xn(t) =


x1n(t)

...
xnn(t)


be a fundamental set of solutions of x′ = A(t)x on (a,b). The matrix-valued function

Φ(t) =


x11(t) x12(t) · · · x1n(t)
x21(t) x22(t) · · · x2n(t)

...
...

. . .
...

xn1(t) xn2(t) · · · xnn(t)


is called a fundamental matrix of the linear system on (a,b).

Theorem 4.4. Let Φ(t) be a fundamental matrix of x′ = A(t)x on (a,b). Then the general solution of
the linear system is given by

x(t) = Φ(t)c,

where c = (c1, . . . ,cn) is an arbitrary constant vector.

4.3. Non-Homogeneous Linear Systems

Now, we consider the solutions of the non-homogeneous system x′ = A(t)x+ g(t), where A = (ai j(t)) is
a continuous n×n matrix-valued function and g(t) is a continuous vector-valued function, both defined on the
interval (a,b).

Theorem 4.5. Let xp(t) be a particular solution of x′ = A(t)x+g(t), and Φ(t) be a fundamental matrix
of the associated homogeneous system x′ =A(t)x. Then the general solution of x′ =A(t)x+g(t) is given
by

x(t) = Φ(t)c+xp(t)

where c is an arbitrary constant vector.

4.4. Homogeneous Linear Systems with Constant Coefficients

Consider a homogeneous linear system x′ = Ax where A = (ai j) is a constant n×n matrix. We shall try to
find a solution of the linear system of the form x(t) = eλ tk, where k is a constant vector, where k ̸= 0. Plugging
it into the system, we see that Ak = λk.

Definition 4.3. Assume that a number λ and a vector k ̸= 0 satisfy Ak = λk, then we call λ an
eigenvalue of A, and k an eigenvector associated with λ .

Recall the following. Let A be an n× n matrix and λ1, . . . ,λk be the distinct roots of the characteristic
polynomial det(A−λ I) = 0. Then there exist positive integers m1, . . . ,mk, such that

det(A−λ I) = (−1)n(λ −λ1)
m1(λ −λ2)

m2 · · ·(λ −λk)
mk ,
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and

m1 +m2 + · · ·+mk = n.

m j is called the algebraic multiplicity (or simply multiplicity) of the eigenvalue λ j. The number of linearly
independent eigenvectors of A associated with λ j is called the geometric multiplicity, denoted µ(λ j). We always
have

µ(λ j)≤ m j.

If µ(λ j) = m j, we say λ j is quasi-simple. If m j = 1, we say λ j is a simple eigenvalue.

Theorem 4.6. If λ is an eigenvalue of A and k is an associated eigenvector, then

x(t) = eλ tk

is a solution of x′ = Ax. Let A be a real matrix. If λ is a complex eigenvalue of A, and k is an eigenvector
associated with λ , then

x1 = Re(eλ tk) x2 = Im(eλ tk)

are two linearly independent real solutions of x′ = Ax.

Theorem 4.7. If A has n linearly independent eigenvectors k1, . . . ,kn associated with eigenvalues
λ1, . . . ,λn, respectively, then

Φ(t) =
(

eλ1tk1, . . . ,eλntkn

)
is a fundamental matrix of x′ = Ax and the general solution is given by

x(t) = Φ(t)c = c1eλ1tk1 + · · ·+ cneλntkn

where c = (c1, . . . ,cn) is an arbitrary constant vector.

Example 4.3. Solve the system

x′ =

(
−3 1
1 −3

)
x.

Solution. The coefficient matrix has eigenvalues λ1 = −2 and λ2 = −4 with respective corresponding
eigenvectors (1,1) and (1,−1). So, the general solution is

x = c1e−2t

(
1
1

)
+ c2e−4t

(
1
−1

)
.

□

Example 4.4. Solve the system

x′ =

(
−3 1
1 −3

)
x+ e−2t

(
−6
2

)
.

Solution. We first solve the associated homogeneous system which yields two linearly independent solutions
x1(t) = (e−2t ,e−2t) and x2(t) = (e−4t ,−e−4t). The fundamental matrix is

Φ(t) = (x1(t),x2(t)) =

(
e−2t e−4t

e−2t −e−4t

)
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We then use the method of variation of parameters. Let g(t) = e−2t(−6,2). Then,

u(t) =
∫ t

0
Φ

−1(s)g(s) ds =

(
−2t

−2e2t +2

)
so

Φ(t)u(t) = 2e−2t

(
−t −1
−t +1

)
+2e−4t

(
1
−1

)
.

Combining the homogeneous solution with the particular solution yields the general solution. □

Example 4.5. Solve

x′ =

(
0 1
−4 0

)
x.

Solution. The coefficient matrix has eigenvalues ±2i. For λ = 2i, we have an eigenvector k = (1,2i). As such,
consider

e2it

(
1
2i

)
=

(
cos2t

−2sin2t

)
+ i

(
sin2t

2cos2t

)
.

Hence, the general solution is

x(t) = c1

(
cos2t

−2sin2t

)
+ c2

(
sin2t

2cos2t

)
.

□

Example 4.6. Solve

x′ =−3x+4y−2z

y′ = x+ z

z′ = 6x−6y+5z

Consider the matrix −3 4 −2
1 0 1
6 −6 5


which has eigenvalues 2,1,−1 and the respective corresponding eigenvectors are (0,1,2),(1,1,0),(1,0,−1).
Hence, the general solution is x

y
z

= c1e2t

0
1
2

+ c2et

1
1
0

+ c3e−t

 1
0
−1

 .

Lemma 4.3. Assume λ is an eigenvalue of A with algebraic multiplicity m > 1. Then the system
(A−λ I)mv = 0 has exactly m linearly independent solutions.

Theorem 4.8. Assume that λ is an eigenvalue of A with algebraic multiplicity m > 1. Let v0 ̸= 0 be a
solution of (A−λ I)mv = 0. Define

vl = (A−λ I)vl−1 l = 1,2, · · · ,m−1,
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and let

x(t) = eλ t
[

v0 + tv1 +
t2

2
v2 + · · ·+ tm−1

(m−1)!
vm−1

]
.

Then x(t) is a solution of x′ = Ax. Let v(1)0 , · · · ,v(m)
0 be m linearly independent solutions of (A−λ I)mv =

0. They generate m linearly independent solutions of x′ = Ax.

Note that for vl = (A−λ I)vl−1, where 1 ≤ l ≤ m−1, we always have

(A−λ I)vm−1 = 0.

If vm−1 ̸= 0, then vm−1 is an eigenvector of A associated with the eigenvalue λ . In practice, to find the solutions
to x′ = Ax associated with an eigenvalue λ of multiplicity m, we first solve (A−λ I)mv = 0 and find m linearly
independent solutions v(1)0 ,v(2)0 , . . . ,v(m)

0 . For each of these vectors, say v(k)0 , we compute the iteration sequence

v(k)l = (A−λ I)v(k)l−1 where l = 1,2, . . . .

There is an integer 0 ≤ j ≤ m−1 (j depends on the choice of v(k)0 ) such that

v(k)j ̸= 0 and (A−λ I)v(k)j = 0.

Thus v j is an eigenvector of A associated with the eigenvalue λ . Then the iteration stops and yields a solution

x(k)(t) = eλ t
[

v(k)0 + tv(k)1 +
t2

2
v(k)2 + · · ·+ t j

j!
v(k)j

]
.

Example 4.7. Solve x′ = Ax, where

A =

−1 1 0
0 −1 4
1 0 −4

 .

Solution. The eigenvalues of A are λ1 =−3 with with multiplicity 2, and λ2 = 0 which is a simple eigenvalue.
For the double eigenvalue λ1 =−3, we solve

(A+3I)2v =

4 4 4
4 4 4
1 1 1

v = 0

and find two linearly independent solutions v(1)0 = (1,0,−1) and v(2)0 = (0,1,−1). So,

v(1)1 = (A+3I)v(1)0 =

 2
−4
2

 x(1) = e−3t
(

v(1)0 + tv(1)1

)
= e−3t


 1

0
−1

+ t

 2
−4
2




v(2)1 = (A+3I)v(2)0 =

 1
−2
1

 x(2) = e−3t
(

v(2)0 + tv(2)1

)
= e−3t


 0

1
−1

+ t

 1
−2
1




For the simple eigenvalue λ2 = 0, we find an eigenvector k3 = (4,4,1), so the general solution is

x(t) = c1x(1)+ c2x(2)+ c3k3

= c1e−3t


 1

0
−1

+ t

 2
−4
2


+ c2e−3t


 0

1
−1

+ t

 1
−2
1


+ c3

4
4
1


□
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4.5. The Phase Plane

Consider a system of two first order equations

x′(t) = f (x,y) and y′(t) = g(x,y).

It is called an autonomous system since f and g are independent of t. So, if (x(t),y(t)) is a solution to the
system, then the pair (x(t + c),y(t + c)) is also a solution to the system for any constant c. Now, let (x(t),y(t))
be a solution to the system. If we plot the points (x(t),y(t)) on the xy-plane, the resulting curve is called an
integral curve of the system, and the xy-plane is called the phase plane.

Let F(x,y) = ⟨ f (x,y),g(x,y)⟩ be the vector field on the xy-plane defined by f and g. If we plot the unit vectors
defined by those non-zero F(x,y) at various points of the phase plane, we obtain the direction field of the
system. For any point p(t) = ⟨x(t),y(t)⟩ of the system, we have

p′(t) =
〈
x′(t),y′(t)

〉
= ⟨ f (x,y),g(x,y)⟩= F(x,y).

So, F(x,y) is everywhere tangential to the integral curve p(t).

The equation
dy
dx

=
g(x,y)
f (x,y)

is called the phase plane equation. So, any integral curve of the system satisfies the phase plane equation.

x

y

−1 1

−1

1

F(x,y) = Mî+N ĵ

Figure 2: Direction field of dx
dt = f (x,y), dy

dt = g(x,y)

A linear autonomous system in the plane has the form

x′(t) = a11x+a12y+b1

y′(t) = a21x+a22y+b2
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where the ai j’s and b j’s are constants. We assume that a11a22 −a21a12 ̸= 0. By a simple translation, the system
can always be written in the form

x′(t) = ax+by

y′(t) = cx+dy

where ad − bc ̸= 0. The point (0,0) is called a critical point of the system since both ax+ by and cx+ dy are
zero at x = 0, y = 0. Corresponding to the critical point (0,0) of the system, we have x(t) = 0 and y(t) = 0 for
all t being a constant solution of the system. Our interest is to investigate the behaviour of the integral curves
near the critical point (0,0). The behaviour of the solutions to the system is linked to the nature of the roots r1

and r2 of the characteristic equation of the system, i.e. r1 and r2 are the roots of the quadratic equation

X2 − (a+d)X +(ad −bc) = 0.

There are five cases to consider.
(i) Case 1: Suppose r1,r2 are real and distinct and are of the same sign. Then, the critical point (0,0) is a

node. Suppose r1 < r2 < 0. Then, the general solution to the system has the form

x(t) = c1A1er1t + c2A2er2t

y(t) = c1B1er1t + c2B2er2t

where the A’s and B’s are fixed constants such that B1
A1

̸= B2
A2

and c1,c2 are arbitrary constants. When
c2 = 0, we have the solution x(t) = c1A1er1t and y(t) = c1B1er1t . For any c1 > 0, it gives the parametric
equation of a half-line A1y = B1x. As t → ∞, the point on this half-line approaches the origin (0,0). For
any c1 < 0, it represents the other half of the line A1y = B1x. As t → ∞, the point on this half-line also
approaches the origin (0,0).

The two lines A1y = B1x and A2y = B2x are called the transformed axes, usually denoted by x̂ and ŷ
on the phase plane.

If c1 ̸= 0 and c2 ̸= 0, the general solution are parametric equations of some curves. Since r1 < 0 and
r2 < 0, these curves approach (0,0) as t → ∞. Furthermore,

y
x
=

c1B1er1t + c2B2er2t

c1A1er1t + c2A2er2t =
(c1B1/c2)e(r1−r2)t +B2

(c1A1/c2)e(r1−r2)t +A2
.

As r1 − r2 < 0, we see that y
x →

B2
A2

as t → ∞ so that all the curves enter (0,0) with slope B2
A2

.

A critical point is called a node if it is approached and entered (with a well-defined tangent line) by
each integral curve as t → ∞ or t → −∞. A critical point is said to be stable if for each R > 0, there
exists a positive r ≤ R such that every integral curve which is inside the circle x2 + y2 = r2 for some
t = t0 remains inside the circle x2 + y2 = R2 for all t > t0. Roughly speaking, a critical point is stable if
all integral curves that get sufficiently close to the point stay close to the point. If the critical point is not
stable, it is called unstable. A critical point is said to be asymptotically stable if it is stable and there exists
a circle x2 + y2 = r2

0 such that every integral curve which is inside this circle for some t = t0 approaches
the critical point as t → ∞. A node is said to be proper if every direction through the node defines an
integral curve, otherwise it is said to be improper.

In our situation, we have (0,0) being an asymptotically stable improper node.
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If r1 > r2 > 0, then the situation is exactly the same except that all curves now approach and enter
(0,0) as t →−∞. So all the arrows showing the directions are reversed. The point (0,0) is an unstable
improper node.

(ii) Case 2: If r1, r2 are real, distinct and of opposite sign, then the critical point (0,0) is a saddle point. Let’s
suppose r1 < 0 < r2. The general solution is still represented by

x(t) = c1A1er1t + c2A2er2t

y(t) = c1B1er1t + c2B2er2t

The two half-line solutions x(t) = c1A1er1t and y(t) = c1B1er1t (for c1 > 0 and c1 < 0) still approach and
enter (0,0) as t → ∞, but the other two half-line solutions x(t) = c2A2er2t ,y(t) = c2B2er2t approach and
enter (0,0) as t →−∞. If c1 ̸= 0 and c2 ̸= 0, the general solution

x(t) = c1A1er1t + c2A2er2t

y(t) = c1B1er1t + c2B2er2t

defines integral curves of x′(t) = ax+by and y′(t) = cx+dy, but since r1 < 0 < r2, none of these curves
approaches (0,0) as t → ∞ or t →−∞. So (0,0) is not a node. Instead, as t → ∞, each of these curves
is asymptotic to one of the half-lines of the line A2y = B2x; whereas as t →−∞, each of these curves is
asymptotic to one of the half-lines of the line A1y = B1x. In this case, the critical point is called a saddle
point and is certainly unstable.

Example 4.8. Find and classify the critical point of the system

x′ = 2x+ y+3

y′ =−3x−2y−4

Solution. Solving 2x+ y+3 = 0 and −3x−2y−4 = 0, we have (x,y) = (−2,1). Next, write(
x′

y′

)
=

(
2 1
−3 −2

)(
x
y

)
+

(
3
−4

)
.

The coefficient matrix has eigenvalues ±1, which are real and of opposite sign. So, the linear system has
a saddle point at the origin of the linearised system. □

(iii) Case 3: If r1, r2 are real and equal, then the critical point (0,0) is a node. Let r1 = r2 = r. In this case,
the general solution may or may not involve a factor of t times ert .

We first consider the subcase where t is not present. Then the general solution is

x(t) = c1ert

y(t) = c2ert

where c1 and c2 are arbitrary constants. The integral curves lie on the lines c1y = c2x. When r > 0, the
integral curves move away from (0,0), so (0,0) is unstable.

When r < 0, the integral curves approach (0,0) and (0,0) is asymptotically stable. In either situation,
all integral curves lie on lines passing through (0,0). Because every direction through (0,0) defines an
integral curve, the point (0,0) is a proper node.

We now discuss the case where a factor of t times ert is present. Suppose r < 0. The general solution
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can be written in the form

x(t) = c1Aert + c2(A1 +At)ert

y(t) = c1Bert + c2(B1 +Bt)ert

where A’s and B’s are definite constants and c1, c2 are arbitrary constants. When c2 = 0, we obtain the
solutions x(t) = c1Aert and y(t) = c1Bert . These are solutions representing the two half-lines (for c1 > 0
and c1 < 0) lying on the line ŷ with equation Ay = Bx and slope B/A; and since r < 0, both approach
(0,0) as t → ∞. Also, since y/x = B/A, it is clear that both of these half-lines enter (0,0) with slope B/A.

If c2 ̸= 0, the solutions

x(t) = c1Aert + c2(A1 +At)ert

y(t) = c1Bert + c2(B1 +Bt)ert

are curves. As r < 0, these curves approach (0,0) as t → ∞. Furthermore,

y
x
=

c1Bert + c2(B1 +Bt)ert

c1Aert + c2(A1 +At)ert =
c1B/c2 +B1 +Bt
c1A/c2 +A1 +At

approaches B/A as t → ∞; so these curves all enter (0,0) with slope B/A. We also have y/x → B/A
as t → −∞. So, each of these curves is tangent to ŷ as t → ±∞. Consequently, (0,0) is a node that is
asymptotically stable.

If r > 0, the situation is unchanged except that the directions of the curves are reversed and the critical
point is unstable.

(iv) Case 4: If r1, r2 are conjugate complex but not purely imaginary, then the critical point (0,0) is a spiral.

Let r1 = α + iβ and r2 = α − iβ . First, observe that the discriminant of the quadratic equation

X2 − (a+d)X +(ad −bc) = 0

is negative. That is,
(a+d)2 −4(ad −bc) = (a−d)2 +4bc < 0.

The general solution of the system

x′(t) = ax+by

y′(t) = cx+dy

is given by

x(t) = eαt [c1(A1 cosβ t −A2 sinβ t)+ c2(A1 sinβ t +A2 cosβ t)]

y(t) = eαt [c1(B1 cosβ t −B2 sinβ t)+ c2(B1 sinβ t +B2 cosβ t)]

where A’s and B’s are definite constants and c’s are arbitrary constants.

Suppose α < 0. Then, we see that x → 0 and y → 0 as t → ∞. That means all integral curves approach
(0,0) as t →∞. Next we shall show that the integral curves do not enter (0,0) as t →∞. Instead they wind
around like a spiral towards (0,0). To do so, we shall show that the angular coordinate θ = tan−1(y/x)
is always strictly increasing or strictly decreasing. That is dθ/dt > 0 for all t > 0, or dθ/dt < 0 for all
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t > 0. Differentiating θ = tan−1(y/x), we have:

dθ

dt
=

x dy
dt − y dx

dt
x2 + y2 .

Using x′(t) = ax+by and y′(t) = cx+dy, we get

dθ

dt
=

cx2 +(d −a)xy−by2

x2 + y2 .

Since we are interested in solutions that represent integral curves, we assume x2 + y2 ̸= 0. Recall that
the discriminant of the quadratic equation is < 0, which implies that b and c have opposite signs. We
consider the case b < 0 and c > 0. When y = 0, then we have dθ/dt = c > 0. If y ̸= 0, dθ/dt cannot be
0. If it were, we have cx2 +(d−a)xy−by2 = 0, or c(x/y)2 +(d−a)(x/y)−b = 0 for some real number
x/y. But this contradicts the fact that its discriminant is < 0. Thus, we conclude that dθ/dt > 0 for all
t > 0 when c > 0. Similarly in case b > 0 and c < 0, dθ/dt < 0 for all t > 0.

x and y change sign infinitely often as t → ∞, all integral curves must spiral in to (0,0) (counterclockwise
or clockwise according to c > 0 or c < 0). The critical point in this case is a spiral, and is asymptotically
stable.

If α > 0, the situation is the same except that the integral curves approach (0,0) as t → −∞ and the
critical point is unstable.

(v) Case 5: If r1, r2 are purely imaginary, then the critical point (0,0) is a centre.

The general solution is given by

x(t) = c1(A1 cosβ t −A2 sinβ t)+ c2(A1 sinβ t +A2 cosβ t)

y(t) = c1(B1 cosβ t −B2 sinβ t)+ c2(B1 sinβ t +B2 cosβ t)

Thus x(t) and y(t) are periodic functions of period 2π so that each integral curve is a closed path
surrounding the origin. These curves can be shown to be ellipses by solving the phase plane equation

dy
dx

=
cx+dy
ax+by

.

Example 4.9. Show that the integral curves of the system

x′ =−βy

y′ = βx

are circles.

Solution. Differentiating the first equation yields x′′ =−βy′ =−β 2x. The characteristic equation is m2+

β 2 = 0, which has roots m =±β i. Hence, the solution is

x(t) = Acos(β t)+Bsin(β t) .

Hence, y(t) = Asin(β t)−Bcos(β t). One can show that x2 + y2 = A2 +B2, which represents a circle
centred at the origin of radius

√
A2 +B2. □

We now summarise the above discussion.
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Theorem 4.9 (classification threm). Assume (0,0) is an isolated critical point of the linear system x′ =
ax+by and y′cx+dy, where a,b,c,d are real and ad−bc ̸= 0. Let r1,r2 be the roots of the characteristic
equation

X2 − (a+d)X +(ad −bc) = 0.

The stability of the origin and the classification of the origin as a critical point depends on the roots r1,r2

as follows:

Roots Type of critical point Stability

distinct, positive improper node unstable
distinct, negative improper node asymptotically stable
opposite signs saddle point unstable
equal, positive proper or improper node unstable
equal, negative proper or improper node asymptotically stable
complex value with positive real part spiral point unstable
complex value with negative real part spiral point asymptotically stable
purely imaginary centre stable

Figure 3: Unstable node and saddle

Figure 4: Centre and spiral
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Figure 5: Star and improper node
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5. Power Series Solutions

5.1. Power Series

We do a bit of recap of MA3210.

Definition 5.1 (power series). An infinite series of the form

∞

∑
n=0

an (x− x0)
n = a0 +a1 (x− x0)+a2 (x− x0)

2 + . . . is a power series in x− x0.

In this section, we will pay close attention to the point x0 = 0. Substituting x0 = 0 into the infinite series in
Definition 5.1, we obtain

∞

∑
n=0

anxn = a0 +a1x+a2x2 + . . . .

This series is said to converge at a point x if

lim
m→∞

m

∑
n=0

anxn exists,

and the value of this series is the value of this limit. Recall that each power series like

∞

∑
n=0

anxn corresponds to a positive real number R called the radius of convergence.

The radius of convergence has the following property:

the series converges if |x|< R and diverges if |x|> R.

We say that R = 0 when the series converges only at x = 0, and equal to ∞ when it converges for all x. In many
important cases, R can be obtained by the ratio test (Theorem 5.1).

Theorem 5.1 (ratio test). Consider the series

∞

∑
n=0

anxn.

If each an ̸= 0 and if for a fixed point x ̸= 0 we have

lim
n→∞

∣∣∣∣an+1xn+1

anxn

∣∣∣∣= lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ |x|= L,

then

the series converges for L < 1 and diverges for L > 1.

As such,

R = lim
n→∞

∣∣∣∣ an

an+1

∣∣∣∣ if the limit exists.

If the limit of the ratio is infinity, then we say that R = ∞.
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Definition 5.2 (interval of convergence). The interval (−R,R) is called the interval of convergence in
the sense that inside the interval, the series converges. Outside the interval, the series diverges.

Example 5.1. The power series

∞

∑
n=0

n!xn = 1+ x+2!x2 +3!x3 + . . .

converges only at x = 0, so R = 0.

Example 5.2. The power series

∞

∑
n=0

xn

n!
= 1+ x+

x2

2!
+

x3

3!
+ . . .

converges for all x, so R = ∞. In fact, this is the famous Maclaurin series for ex.

Example 5.3. The power series

∞

∑
n=0

xn = 1+ x+ x2 + . . .

converges for |x|< 1, so R = 1. In fact, this is a geometric series with first term 1 and common ratio x.

Proposition 5.1. Suppose the series

∞

∑
n=0

anxn converges for |x|< R with R > 0.

We denote its sum by f (x). That is,

f (x) =
∞

∑
n=0

anxn = a0 +a1x+a2x2 + . . .

so one can prove that f is continuous and has derivatives of all orders for |x|< R. Also, the series can be
differentiated termwise in the sense that

f ′ (x) =
∞

∑
n=1

nanxn−1 = a1 +2a2x+3a3x2 + . . .

f ′′ (x) =
∞

∑
n=2

n(n−1)anxn−2 = 2a2 +3 ·2a3x+ . . .

and so on. The resulting series are still convergent for |x|< R. These successive differentiated series yield
the following basic formula relating an with f (x) and its derivatives. That is,

an =
f (n) (0)

n!
.

Proposition 5.2. Suppose the series

∞

∑
n=0

anxn converges for |x|< R with R > 0.

The series can be integrated termwise provided that the limits of integration lie inside the interval of
convergence.
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Proposition 5.3. Suppose

f (x) =
∞

∑
n=0

anxn = a0 +a1x+a2x2 + . . . and g(x) =
∞

∑
n=0

bnxn = b0 +b1x+b2x2 + . . .

are power series with interval of convergence |x| < R. Then, the series can be added or subtracted
termwise, i.e.

f (x)±g(x) =
∞

∑
n=0

(an ±bn)xn = (a0 ±b0)+(a1 ±b1)x+(a2 ±b2)x2 + . . .

Just like multiplication of polynomials (convolution), we have

f (x)g(x) =
∞

∑
n=0

cnxn where cn = a0bn +a1bn−1 + . . .+anb0.

Theorem 5.2. Suppose two power series

f (x) =
∞

∑
n=0

anxn = a0 +a1x+a2x2 + . . . and g(x) =
∞

∑
n=0

bnxn = b0 +b1x+b2x2 + . . .

converge to the same function so that f (x) = g(x) for |x|< R. Then, because an = f (n) (0)/n!, we have
an = bn for all n. In particular, if

f (x) = 0 for all |x|< R then an = 0 for all n ∈ Z≥0.

Let f (x) be a continuous function that has derivatives of all orders for |x| < R. Can it be represented by a
power series? Given that an = f (n) (0)/n!, it is natural to expect

f (x) =
∞

∑
n=0

f (n) (0)
n!

xn = f (0)+ f ′ (0)x+
f ′′ (0)

2!
x2 + . . . for all |x|< R.

Unfortunately, this is not always true. Instead, one can use Taylor’s expansion for f (x)†, which is

f (x) =
n

∑
k=0

f (k) (0)
k!

xk +Rn (x) where the remainder Rn (x) =
f (n+1) (x0)

(n+1)!
xn+1

for some x0 ∈ (0,x).

Example 5.4. The following familiar expansions are valid for all x:

ex =
∞

∑
n=0

xn

n!
= 1+ x+

x2

2!
+

x3

3!
+ . . .

sinx =
∞

∑
n=0

(−1)n x2n+1

(2n+1)!
= x− x3

3!
+

x5

5!
+ . . .

cosx =
∞

∑
n=0

(−1)n x2n

(2n)!
= 1− x2

2!
+

x4

4!
+ . . .

†This is formally called Taylor’s theorem with Lagrange form of the remainder.
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Definition 5.3 (analytic function). A function f (x) with the property that a power series expansion of
the form

f (x) =
∞

∑
n=0

an (x− x0)
n

is valid in some interval containing the point x0 is said to be analytic at x0. In this case,

an =
f (n) (x0)

n!
and the above series is called the Taylor series of f (x) at x0.

One would encounter analytic functions (Definition 5.3) in MA3211 Complex Analysis.

Example 5.5. ex, sinx and cosx are analytic for all x ∈ R.

Proposition 5.4. The following hold for analytic functions:
(i) Polynomials, ex, sinx and cosx are analytic at all points

(ii) If f (x) and g(x) are analytic at x0, then

f (x)±g(x) , f (x)g(x) , f (x)/g(x) are analytic at x0

For the quotient f (x)/g(x), we further add the constraint that g(x0) ̸= 0
(iii) In relation to the inverse function theorem, if f (x) is analytic at x0 and f−1 (x) is continuous

inverse, then

f−1 (x) is analytic at f (x0) if f ′ (x0) ̸= 0

(iv) If g(x) is analytic at x0 and f (x) is analytic at g(x0), then f (g(x)) is analytic at x0

(v) The sum of power series is analytic at all points inside the interval of convergence

5.2. Series Solutions of First-Order Solutions

A first-order ODE y′ = f (x,y) can be solved by assuming it has a power series solution. Here are two
familiar examples.

Example 5.6. Consider the differential equation

y′ = y.

We assume that it has a power series solution of the form

y = a0 +a1x+a2x2 + . . .+anxn + . . . which converges for |x|< R.

So, the equation y′ = y has a solution which is analytic at the origin. Then,

y′ = a1 +2a2x+ . . .+nanxn−1 which converges for |x|< R.

Since y′ = y, both series have the same coefficients. As such, we obtain the recurrence relation

(n+1)an+1 = an for n = 0,1,2, . . .

so by recursion, we have

an =
1
n!

a0.
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As such,

y = a0

(
1+ x+

x2

2!
+ . . .+

xn

n!
+ . . .

)
where a0 is an arbitrary constant. Of course, this is the Maclaurin expansion of ex, which has the general solution
y = a0ex.

Example 5.7. The function y = (1+ x)p where p ∈ R satisfies the differential equation

(1+ x)y′ = py where y(0) = 1.

Just like before, we assume that y has a power series solution of the form

y = a0 +a1x+a2x2 + . . .+anxn + . . . with positive radius of convergence.

Then,

y′ = a1 +2a2x+3a3x2 + . . .+(n+1)an+1xn + . . .

so

xy′ = a1x+2a2x2 + . . .+nanxn + . . . and py = pa0 + pa1x+ pa2x2 + . . .+ panxn + . . .

By considering the differential equation and equating coefficients, we have

(n+1)an+1 +nan = pan so an+1 =
p−n
n+1

an.

This recurrence relation holds for all n ∈ Z≥0. So,

a1 = p

a2 =
p(p−1)

2

a3 =
p(p−1)(p−2)

2 ·3

so in general, one can deduce that

an =
p(p−1) . . .(p−n+1)

n!
.

In other words,

y = 1+ px+
p(p−1)

2!
x2 +

p(p−1)(p−2)
2 ·3

x3 + . . .+
p(p−1) . . .(p−n+1)

n!
xn + . . .

for which one can deduce that the series converges for |x| < 1 by the ratio test. Since the differential equation
has a unique solution (due to the initial value), we conclude that

(1+ x)p = 1+ px+
p(p−1)

2!
x2 +

p(p−1)(p−2)
2 ·3

x3 + . . .+
p(p−1) . . .(p−n+1)

n!
xn + . . . for |x|< 1.

This is in fact the binomial expansion of (1+ x)p.

5.3. Second-Order Linear Equations and Ordinary Points
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Definition 5.4 (ordinary and singular points). Consider the homogeneous second-order linear ODE

y′′+P(x)y′+Q(x)y = 0.

The point x0 is an ordinary point of the ODE if P(x) and Q(x) are analytic at x0. If at x = x0, P(x) and/or
Q(x) are not analytic, then x0 is a singular point of the ODE.

Definition 5.5 (singular point). A singular point x0 at which the functions

(x− x0)P(x) and (x− x0)
2 Q(x) are analytic

is a regular singular point of the ODE y′′+P(x)y′+Q(x)y = 0. If a singular point x0 is not a regular
singular point, then it is an irregular singular point.

Example 5.8. If P(x) and Q(x) are constant functions, then every point is an ordinary point of y′′+P(x)y′+
Q(x)y = 0.

Example 5.9. For the differential equation y′′+ xy = 0, the function Q(x) = x is analytic at every point, so
every point is an ordinary point.

Example 5.10. Consider the Cauchy-Euler equation

y′′+
a1

x
y′+

a2

x2 y = 0 where a1 and a2 are constants.

Then, x = 0 is a singular point but every other point is an ordinary point.

Example 5.11. Consider the differential equation

y′′+
1

(x−1)2 y′+
8

x(x−1)
y = 0.

The singular points are 0 and 1. At the point 0,

xP(x) =
x

(x−1)2 and x2Q(x) =− 8x
x−1

are analytic at x = 0.

So, 0 is a regular singular point. At the point 1, (x−1)P(x) = 1/(x−1) which is not analytic at x = 1, so x = 1
is an irregular singular point.

To discuss the behaviour of the singularities at infinity, naturally, we use the substitution x = 1/t. This
converts the problem to the behaviour of the transformed equation near the origin. As such, the original
differential equation

d2y
dx2 +P(x)

dy
dx

+Q(x)y = 0 becomes
d2y
dt2 +

(
2
t
− 1

t2 P
(

1
t

))
dy
dt

+
1
t4 Q

(
1
t

)
y = 0.

Hopefully, the reader would know how to define the point at infinity.

Example 5.12. Consider the differential equation

d2y
dx2 +

1
2

(
1
x2 +

1
x

)
dy
dx

+
1

2x3 y = 0.

The substitution x = 1/t transforms the differential equation into

d2y
dt2 +

(
3− t

2t

)
dy
dt

+
1
2t

y = 0.

As t = 0 is a regular singular point of the new differential equation, we say that the point at inifinity is a regular
singular point of the original differential equation.
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Example 5.13 (hypergeometric equation). Consider the hypergeometric differential equation

x(1− x)
d2y
dx2 +[c− (a+b+1)x]

dy
dx

−aby = 0 where a,b,c are constants.

Show that the equation has precisely 3 regular singular points at 0,1,∞.

Solution. We have
d2y
dx2 +

c− (a+b+1)x
x(1− x)

dy
dx

− ab
x(1− x)

y = 0.

So,

P(x) =
c− (a+b+1)x

x(1− x)
and Q(x) =− ab

x(1− x)
.

One checks that x = 0 and x = 1 are regular singular points. By using the substitution t = 1/x, one can deduce
that t = 0 is a regular singular point, so x = ∞ is a regular singular point. □

Theorem 5.3. Let x0 be an ordinary point of the differential equation

y′′+P(x)y′+Q(x)y = 0 where a0 and a1 are constants.

Then, there exists a unique function y(x) that is analytic at x0 which is a solution to the differential
equation in an interval containing x0, and satisfies the initial conditions y(x0) = a0 and y′ (x0) = a1.

Moreover, if the power series expansions of P(x) and Q(x) are valid on an interval |x− x0| < R,
where R > 0, then the power series expansion of this solution is also valid on the same interval.

Definition 5.6 (Legendre’s equation). The differential equation(
1− x2)y′′−2xy′+ p(p+1)y = 0

is known as Legendre’s equation. Here, p is a constant called the order of the equation.

The functions defined in the series solution of Legendre’s equation are called Legendre functions. When
p ∈ Z≥0, one of these series terminates and becomes a polynomial in x. For example, if p = n is a positive even
integer, the series representing y1 terminates and y1 is a polynomial of degree n; if p = n is odd, y2 is again
a polynomial of degree n. These are called Legendre polynomials Pn (x) and they give particular solutions to
Legendre’s equation (

1− x2)y′′−2xy′+n(n+1)y = 0 where n ∈ Z≥0.

We define the first six Legendre polynomials as follows (please refer to the graphs of P0 (x) , . . . ,P4 (x) in Figure
6):

P0 (x) = 1

P1 (x) = x

P2 (x) =
1
2
(
3x2 −1

)
P3 (x) =

1
2
(
5x3 −3x

)
P4 (x) =

1
8
(
35x4 −30x2 +3

)
P5 (x) =

1
8
(
63x5 −70x3 +15x

)



MA3220 ORDINARY DIFFERENTIAL EQUATIONS Page 55 of 62

−1 −0.8 −0.6 −0.4 −0.2 0.2 0.4 0.6 0.8 1 1.2 1.4

−1

−0.5

0.5

1

O

y = P0(x)

y = P1(x)
y = P2(x)

y = P3(x)

y = P4(x) x

y

Figure 6: The graphs of the first five Legendre polynomials Pn (x) where 0 ≤ n ≤ 4

Returning to Legendre’s differential equation, we have

P(x) =− 2x
1− x2 and Q(x) =

p(p+1)
1− x2 .

The origin is an ordinary point, and

we expect a solution of the form y =
∞

∑
n=0

anxn.

As such, the differential equation can be written as

(
1− x2) ∞

∑
n=0

(n+1)(n+2)an+2xn −2x
∞

∑
n=0

(n+1)an+1xn + p(p+1)
∞

∑
n=0

anxn = 0.

Equivalently,

∞

∑
n=0

(n+1)(n+2)an+2xn −
∞

∑
n=2

n(n−1)anxn −
∞

∑
n=1

2nanxn +
∞

∑
n=0

p(p+1)anxn = 0.

Since each series contains terms in xn and the sum of these series is zero as mentioned, the coefficients of xn

must be zero for all n. This yields the second-order recurrence relation

(n+1)(n+2)an+2 −n(n−1)an −2nan + p(p+1)an = 0 for all n ≥ 2.

Equivalently, the recurrence relation can also be written as

an+2 =−(p−n)(p+n+1)
(n+1)(n+2)

an.

We can consider n being odd and n being even, so that we can obtain an explicit expression of the recurrence
relation in terms of a1 and a0 respectively. We omit the details here, but anyway one can check that the desired
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explicit expression for the nth Legendre polynomial Pn (x) is

Pn (x) =
⌊n/2⌋

∑
k=0

(−1)k (2n−2k)!
2nk!(n− k)!(n−2k)!

xn−2k.

Rodrigues’ formula (Theorem 5.4) provides a nice formula for generating the nth Legendre polynomial.

Theorem 5.4 (Rodrigues’ formula). We have

Pn (x) =
1

n!2n
dn

dxn

(
x2 −1

)n
.

Definition 5.7 (Hermite’s equation). Let p be a constant. Then,

y′′−2xy′+2py = 0

is known as Hermite’s equation.

We leave it to the reader to verify that the general solution to Hermite’s equation is y(x) = a0y1 (x) +
a1y2 (x), where

y1 (x) = 1− 2p
2!

x2 +
22 (p−2)

4!
x4 − 23 p(p−2)(p−4)

6!
x6 + . . .

y2 (x) = x− 2(p−1)
3!

x3 +
22 (p−1)(p−3)

5!
x5 − 23 (p−1)(p−3)(p−5)

7!
x7 + . . .

The Hermite polynomial of degree n, denoted by Hn (x), is the nth degree polynomial solution to Hermite’s
equation, multiplied by a suitable constant so that the coefficient of xn is 2n. The first six Hermite polynomials
are

H0 (x) = 1

H1 (x) = 2x

H2 (x) = 4x2 −2

H3 (x) = 8x3 −12x

H4 (x) = 16x4 −48x2 +12

H5 (x) = 32x5 −160x3 +120x

5.4. Regular Singular Points and Frobenius’ Method

Consider the second order linear homogeneous differential equation

x2y′′+ xp(x)y′+q(x)y = 0,

where p(x) and q(x) are analytic at x= 0. In other words, 0 is said to be a regular singular point of the differential
equation. We write p(x) and q(x) as power series, i.e.

p(x) = p0 + p1x+ p2x2 + . . . and q(x) = q0 +q1x+q2x2 + . . . .

Suppose the differential equation has a series solution of the form

y = xr
∞

∑
n=0

anxn =
∞

∑
n=0

anxn+r.
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An infinite series of this form is called a Frobenius series, and the method that we will be using to solve the
differential equation is known as the method of Frobenius. We may assume that a0 ̸= 0 because the series must
have a first non-zero term. Termwise differentiation yields

y′ =
∞

∑
n=0

an(n+ r)xn+r−1 and y′′ =
∞

∑
n=0

an(n+ r)(n+ r−1)xn+r−2.

One can substitute the series of y,y′,y′′ into the differential equation. Thereafter, we omit the algebraic
manipulation but the idea is that the coefficient r(r − 1)a0 + p0ra0 + q0a0 of xr must vanish. Since a0 ̸= 0,
it follows that r must satisfy the quadratic equation

r(r−1)+ p0r+q0 = 0.

We call this the indicial equation, which is the same equation obtained with the Cauchy-Euler equation. The
two roots of the indicial equation (which are possibly equal) are the exponents of the differential equation at
the regular singular point x = 0.

Let r1 and r2 be the roots of the indicial equation. If r1 ̸= r2, then there are two possible Frobenius solutions
and they are linearly independent. On the other hand, if r1 = r2, then there is only one possible Frobenius series
solution. The second one cannot be a Frobenius series and can only be found by other means.

Example 5.14. Find the exponents in the possible Frobenius series solutions of the differential equation

2x2(1+ x)y′′+3x(1+ x)3y′− (1− x2)y = 0.

Solution. Note that x = 0 is a regular singular point since p(x) = 3
2(1 + x)2 and q(x) = −1

2(1 − x) are
polynomials. Rewriting the equation in standard form yields

y′′+
3
2(1+2x+ x2)

x
y′+

−1
2(1− x)

x2 y = 0.

We see that p0 =
3
2 and q0 =−1

2 , so the indicial equation is

r(r−1)+
3
2

r− 1
2
= 0.

The roots are r1 =
1
2 and r2 =−1, so the two possible Frobenius series soliutions are of the form

y1(x) = x1/2
∞

∑
n=0

anxn and y2(x) = x−1
∞

∑
n=0

anxn.

□

Example 5.15. Find the Frobenius series solutions of

xy′′+2y′+ xy = 0.

Solution. Rewrite the equation in standard form so we obtain

x2y′′+2xy′+ x2y = 0.

So, p(x) = 2 and q(x) = x2. Thus, p0 = 2 and q0 = 0 and the indicial equation is r(r−1)+2r = 0. Hence, r1 = 0
and r2 =−1. In this case, r1− r2 is an integer and we may not have two Frobenius series solutions. Having said
that, we know that there is a Frobenius series solution corresponding to r1 = 0. We consider the possibility of
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the solution corresponding to the smaller exponent r2 =−1. We begin with

y = x−1
∞

∑
n=0

cnxn =
∞

∑
n=0

cnxn−1.

Substituting into the given equation, we obtain

∞

∑
n=0

(n−1)(n−2)cnxn−2 +2
∞

∑
n=0

(n−1)cnxn−2 +
∞

∑
n=0

cnxn = 0.

Hence,
∞

∑
n=0

n(n−1)cnxn−2 +
∞

∑
n=2

cn−2xn−2 = 0.

Equating coefficients, we obtain the recurrence relation

cn =− cn−2

n(n−1)
for n ≥ 2.

It follows that for n ≥ 1, we have

c2n =
(−1)nc0

(2n)!
and c2n+1 =

(−1)nc1

(2n+1)!
.

Hence,

y = x−1
∞

∑
n=0

cnxn =
c0

x

∞

∑
n=0

(−1)n

(2n)!
x2n +

c1

x

∞

∑
n=0

(−1)n

(2n+1)!
x2n+1.

By recalling some classic series expansions, we recognise this general solution as y = 1
x (c0 cosx+ c1 sinx). On

the other hand, if we begin with the larger exponent, we will obtain the solution sinx
x . □

Example 5.16 (MA3220 AY14/15 Sem 1 Tutorial 10). Find the Frobenius series solutions of the differential
equation

xy′′+2y′+9xy = 0 where x > 0.

Solution. Assume that the differential equation has a series solution of the form

y =
∞

∑
n=0

anxn+r.

Then,

y′ =
∞

∑
n=0

(n+ r)anxn+r−1 and y′′ =
∞

∑
n=0

(n+ r)(n+ r−1)anxn+r−2.

Substituting all these into the differential equation yields

∞

∑
n=0

an [(n+ r)(n+ r−1)+2(n+ r)]xn+r−1 +
∞

∑
n=0

9anxn+r+1 = 0.

We then look at the lowest power term which is xr−1. Setting n= 0 yields r(r−1)+2r = 0, which is our indicial
equation. It has roots r1 =−1 and r2 = 0. When r = 0, substituting this into our series yields

∞

∑
n=0

n(n+1)anxn−1 +
∞

∑
n=0

9anxn+1 = 0.

We then combine this into a single series, so

∞

∑
n=2

[n(n+1)an +9an−2]xn−1 = 0 so n(n+1)an +9an−2 = 0.
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The recurrence relation can be rewritten as

an =− 9
n(n+1)

an−2.

By repeatedly applying the recurrence relation, we have

y1(x) = a0

(
1− 9

2 ·3
x2 +

92

2 ·3 ·4 ·5
x4 −·· ·

)
= a0

∞

∑
n=0

(−1)n 9n

(2n+1)!
x2n = a0 ·

cos3x
x

.

When r =−1, one can obtain the Frobenius series solution being some constant times sin3x
3x . As such, we have

obtained two linearly independent solutions. □
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6. Fundamental Theory of Ordinary Differential Equations

6.1. Existence-Uniqueness Theorems

Here, we consider the initial value problem

dx
dt

= f (t,x) where x(t0) = x0.

Definition 6.1 (Lipschitz continuity). Let G ⊆ R2. We say that f (t,x) : G → R2 satisfies a Lipschitz
condition with respect to x in G if there exists a constant L > 0 such that for any (t,x1),(t,x2) ∈ G,

| f (t,x1)− f (t,x2)| ≤ L |x1 − x2| .

L is called a Lipschitz constant.

Theorem 6.1 (Picard). Let f (t,x) be continuous on the rectangle

R : |t − t0| ≤ a and |x− x0| ≤ b where a,b > 0.

Also, let | f (t,x)| ≤ M for all (t,x) ∈ R. Furthermore, assume f satisfies a Lipschitz condition with
constant L in R. Then, there exists a unique solution to the initial value problem

dx
dt

= f (t,x) with x(t0) = x0 on the interval I = [t0 −α, t0 +α] where α = min
{

a,
b
M

}
.

Example 6.1. Let f (t,x) = x2e−t2
sin t be defined on

G =
{
(t,x) ∈ R2 : 0 ≤ x ≤ 2

}
.

Let (t,x1),(t,x2) ∈ G. Then,

| f (t,x1)− f (t,x2)|=
∣∣∣x2

1e−t2
sin t − x2

2e−t2
sin t

∣∣∣= ∣∣∣e−t2
sin t

∣∣∣ |x1 + x2| |x1 − x2|

Based on the graph of y =
∣∣∣e−t2

sin t
∣∣∣, we see that the maximum value is ≈ 0.397 ≤ 1, and |x1 + x2| ≤ 4, so we

may take L = 1 ·4 so f satisfies a Lipschitz condition on G with Lipschitz constant 4.

Example 6.2. Let f (t,x) = t
√

x be defined on

G =
{
(t,x) ∈ R2 : 0 ≤ t ≤ 1,0 ≤ x ≤ 1

}
.

Consider the two points (1,x),(1,0) ∈ G. We have

| f (1,x)− f (1,0)|=
√

x =
1√
x
|x−0| .

However, as x → 0+, we have 1√
x →+∞, so f cannot satisfy the Lipschitz condition on G for any finite constant

L > 0.

Proposition 6.1. Suppose f (t,x) has a continuous partial derivative fx(t,x) on a rectangle R on the
tx-plane. Then, f satisfies a Lipschitz condition on R.

Example 6.3. Let f (t,x) = x2 be defined on G =
{
(t,x) ∈ R2 : 0 ≤ t ≤ 1

}
. Then,

| f (t,x1)− f (t,x2)|= |x1 + x2| |x1 − x2| .
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Since x1 and x2 can be arbitrarily large, then f cannot satisfy a Lipschitz condition on G. However, if we replace
G with any compact subset of R2 (equivalent to closed and bounded by the Heine-Borel theorem), then f will
satisfy the Lipschitz condition.

Example 6.4 (MA3220 AY14/15 Sem 1 Tutorial 11). Let

R =
{
(t,x) ∈ R2 : |t| ≤ a, |x| ≤ b

}
where a,b > 0.

Let f (t,x) = t sinx+ xcos t be defined on R. Show that f satisfies a Lipschitz condition with respect to x on R.

Solution. We have

| f (t,x1)− f (t,x2)|= |t sinx1 − t sinx2 + x1 cos t − x2 cos t|
≤ |t| |sinx1 − sinx2|+ |cos t| |x1 − x2|
≤ a ·2+1 ·2b = 2a+2b

so we can take the Lipschitz constant to be 2a+2b. Hence, f satisfies the Lipschitz condition with respect to x
on R. □

6.2. The Method of Successive Approximations

6.3. Gronwall’s Inequality

Theorem 6.2. Let f ,g,h ≥ 0 be continuous functions defined for t ≥ t0. If

f (t)≤ h(t)+
∫ t

t0
g(s) f (s) ds for t ≥ t0 then f (t)≤ h(t)+

∫ t

t0
g(s)h(s)e

∫ t
s g(u) du ds for t ≥ t0.

Proof. Let

z(t) =
∫ t

t0
g(s) f (s) ds.

Then, for t ≥ t0, we have z′(t) = g(t) f (t) by the fundamental theorem of Calculus. Since g(t)≥ 0, multiplying
both sides of the given inequality by g(t) yields

z′(t)≤ g(t)[h(t)+ z(t)] so z′(t)−g(t)z(t)≤ g(t)h(t).

This is a first order differential inequality which can be easily solved by the integrating factor method. We omit
the remaining details.

Theorem 6.3 (Gronwall’s inequality). Let f ,g ≥ 0 be continuous functions for t ≥ t0. Also, let k be
any non-negative constant. If

f (t)≤ k+
∫ t

t0
g(s) f (s) ds for t ≥ t0 then f (t)≤ ke

∫ t
t0

g(s) ds for t ≥ t0.

Proof. Set h(t) = k in Theorem 6.2.

Corollary 6.1. Let f be a continuous non-negative function for t ≥ t0 and k be a non-negative constant.
If

f (t)≤ k
∫ t

t0
f (s) ds for all t ≥ t0 then f (t) = 0 for all t ≥ t0.
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Corollary 6.2. Let f (t,x) be a continuous function which satisfies a Lipschitz condition on R with a
Lipschitz constant L, where R is either a rectangle or a strip. If φ and ϕ are two solutions to the initial
value problem

x′ = f (t,x) where x(t0) = x0,

on an interval I containing t0, then φ(t) = ϕ(t) for all t ∈ I.

Theorem 6.4 (Peano). Suppose G ⊆ R2 is an open subset containing (t0,x0) and f (t,x) is continuous
on G. Then, there exists a> 0 such that the initial value problem has at least one solution on [t0−a, t0+a].

Example 6.5. Suppose φ(t) is a solution to the initial value problem

dx
dt

=
x3 − x

1+ t2x2 where x(0) =
1
2
.

Show that 0 < φ(t)< 1 for all t ∈ J, where φ(t) is defined on the open interval J containing 0.

Solution. Let φ(t) be a solution defined on the open interval J, where 0 ∈ J. Suppose there exists s ∈ J such that
φ(s)≥ 1. Without loss of generality, assume s > 0. Since φ(t) is continuous and φ(0) = 1

2 , by the intermediate
value theorem, there exists s0 ∈ (0,s) such that φ(s0) = 1. We can take s0 to be the least value in (0,s) such that
φ(s0) = 1. That is to say, φ(t)< 1 for all 0 < t < s0 and φ(s0) = 1.

We now consider the initial value problem

dx
dt

=
x3 − x

1+ t2x2 where x(s0) = 1.

The function f (t,x) = x3−x
1+t2x2 satisfies Picard’s theorem on existence and uniqueness (Theorem 6.1), so there

exists a unique solution defined on an interval I = [s0−α,s0+α] for some α > 0. The function φ(t) defined on
J is a solution to this initial value probm, and it has the property that φ(t)< 1 for all t < s0. However, φ(t) = 1 is
a solution to this intiial value problem on I, but ϕ and φ are two different solutions to the initial value problem,
contradicting the uniqueness of the solution. It follows that φ(t) < 1 for all t ∈ J. Similarly, φ(t) > 0 for all
t ∈ J. □
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